Disulfide bonds of herpes simplex virus type 2 glycoprotein gB. 1996

N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
Chiron Corporation, Emeryville, California 94608, USA.

Glycoprotein B (gB) is the most highly conserved envelope glycoprotein of herpesviruses. The gB protein is required for virus infectivity and cell penetration. Recombinant forms of gB being used for the development of subunit vaccines are able to induce virus-neutralizing antibodies and protective efficacy in animal models. To gain structural information about the protein, we have determined the location of the disulfide bonds of a 696-amino-acid residue truncated, recombinant form of herpes simplex virus type 2 glycoprotein gB (HSV gB2t) produced by expression in Chinese hamster ovary cells. The purified protein, which contains virtually the entire extracellular domain of herpes simplex virus type 2 gB, was digested with trypsin under nonreducing conditions, and peptides were isolated by reversed-phase high-performance liquid chromatography (HPLC). The peptides were characterized by using mass spectrometry and amino acid sequence analysis. The conditions of cleavage (4 M urea, pH 7) induced partial carbamylation of the N termini of the peptides, and each disulfide peptide was found with two or three different HPLC retention times (peptides with and without carbamylation of either one or both N termini). The 10 cysteines of the molecule were found to be involved in disulfide bridges. These bonds were located between Cys-89 (C1) and Cys-548 (C8), Cys-106 (C2) and Cys-504 (C7), Cys-180 (C3) and Cys-244 (C4), Cys-337 (C5) and Cys-385 (C6), and Cys-571 (C9) and Cys-608 (C10). These disulfide bonds are anticipated to be similar in the corresponding gBs from other herpesviruses because the 10 cysteines listed above are always conserved in the corresponding protein sequences.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
February 1987, Journal of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
January 1985, Gene,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
January 1994, Journal of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
August 1991, Journal of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
January 1986, Archives of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
February 1987, Journal of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
March 1984, Virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
March 1990, Journal of medical virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
January 1989, Archives of virology,
N Norais, and D Tang, and S Kaur, and S H Chamberlain, and F R Masiarz, and R L Burke, and F Marcus
August 1985, Archives of biochemistry and biophysics,
Copied contents to your clipboard!