Chimeric Sindbis-Ross River viruses to study interactions between alphavirus nonstructural and structural regions. 1996

R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
Division of Biology, California Institute of Technology, Pasadena 91125, USA.

Sindbis virus and Ross River virus are alphaviruses whose nonstructural proteins share 64% identity and whose structural proteins share 48% identity. Starting from full-length cDNA clones of both viruses, we have generated two reciprocal Sindbis-Ross River chimeric viruses in which the structural and nonstructural regions have been exchanged. These chimeric viruses replicate readily in several cell lines. Both chimeras grow more poorly than do the parental viruses, with the chimera containing Sindbis virus nonstructural proteins and Ross River virus structural proteins growing considerably better in both mosquito and Vero cell lines than the reciprocal chimera does. The reduction in replicative capacity in comparison with the parental viruses appears to result at least in part from a reduction in RNA synthesis, which suggests that the structural proteins or sequence elements within the structural region interact with the nonstructural proteins or sequence elements within the nonstructural region, that these interactions are required for efficient RNA replication, and that these interactions are suboptimal in the chimeras. The chimeras are able to infect mice, but their growth is attenuated. Western equine encephalitis virus, a virus widely distributed throughout the Americas, has been previously shown to have arisen by natural recombination between two distinct alphaviruses, but other naturally occurring recombinant alphaviruses have not been found. The present results suggest that most nonstructural/structural chimeras that might arise by natural recombination will be viable but that interactions between different regions of the genome, some of which were previously known but some of which remain unknown, limit the ability of such recombinants to become established.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012398 Ross River virus A species of ALPHAVIRUS associated with epidemic EXANTHEMA and polyarthritis in Australia.
D012845 Sindbis Virus The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses. Babanki virus,Kyzylagach virus,Ockelbo Virus
D014709 Vero Cells A CELL LINE derived from the kidney of the African green (vervet) monkey, (CHLOROCEBUS AETHIOPS) used primarily in virus replication studies and plaque assays. Cell, Vero,Cells, Vero,Vero Cell
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide
D016865 Reassortant Viruses Viruses containing two or more pieces of nucleic acid (segmented genome) from different parents. Such viruses are produced in cells coinfected with different strains of a given virus. Reassortant Virus,Virus, Reassortant,Viruses, Reassortant

Related Publications

R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
January 1996, Journal of medical entomology,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
March 2000, Journal of virology,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
December 1999, Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
February 1969, The Australian journal of experimental biology and medical science,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
January 1981, Transactions of the Royal Society of Tropical Medicine and Hygiene,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
May 1988, Virology,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
November 1994, The New Zealand medical journal,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
September 1996, Journal of the American Mosquito Control Association,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
February 1985, Journal of virology,
R J Kuhn, and D E Griffin, and K E Owen, and H G Niesters, and J H Strauss
April 2007, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!