Insertional mutagenesis and rapid cloning of essential genes in zebrafish. 1996

N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA.

Large-scale chemical mutagenesis screens in zebrafish have led to the isolation of thousands of lethal mutations in genes that are essential for embryonic development. However, the cloning of these mutated genes is difficult at present as it requires positional cloning methods. In Drosophila, chemical mutagenesis screens were complemented with P-element insertional mutagenesis which facilitated the cloning of many genes that had been identified by chemical lesions. To facilitate the cloning of vertebrate genes that are important during embryogenesis, we have developed an insertional mutagenesis strategy in zebrafish using a retroviral vector. Here, in a pilot screen of 217 proviral insertions, we obtained three insertional mutants with embryonic lethal phenotypes, and identified two of the disrupted genes. One of these, no arches, is essential for normal pharyngeal arch development, and is homologous to the recently characterized Drosophila zinc-finger gene, clipper, which encodes a novel type of ribonuclease. As it is easy to generate tens to hundreds of thousands of proviral transgenes in zebrafish, it should now be possible to use this screening method to mutate and then rapidly clone a large number of genes affecting vertebrate developmental and cellular processes.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009052 Leukemia Virus, Murine Species of GAMMARETROVIRUS, containing many well-defined strains, producing leukemia in mice. Disease is commonly induced by injecting filtrates of propagable tumors into newborn mice. Graffi Virus,Graffi's Chloroleukemic Strain,Leukemia Viruses, Murine,Mouse Leukemia Viruses,Murine Leukemia Virus,Murine Leukemia Viruses,Graffi Chloroleukemic Strain,Graffis Chloroleukemic Strain,Leukemia Viruses, Mouse
D010614 Pharynx A funnel-shaped fibromuscular tube that conducts food to the ESOPHAGUS, and air to the LARYNX and LUNGS. It is located posterior to the NASAL CAVITY; ORAL CAVITY; and LARYNX, and extends from the SKULL BASE to the inferior border of the CRICOID CARTILAGE anteriorly and to the inferior border of the C6 vertebra posteriorly. It is divided into the NASOPHARYNX; OROPHARYNX; and HYPOPHARYNX (laryngopharynx). Throat,Pharynxs,Throats
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
June 2002, Nature genetics,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
December 2001, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
March 2006, Briefings in functional genomics & proteomics,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
November 2003, Developmental dynamics : an official publication of the American Association of Anatomists,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
January 2007, Genome biology,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
December 1996, Genes & development,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
December 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
October 1993, Genetics,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
January 1999, Methods in cell biology,
N Gaiano, and A Amsterdam, and K Kawakami, and M Allende, and T Becker, and N Hopkins
January 2004, Methods in cell biology,
Copied contents to your clipboard!