Antithymocyte immunoglobulin in severe aplastic anemia and bone marrow transplantation. 1996

C Colby, and C A Stoukides, and T R Spitzer
Massachusetts General Hospital, Boston 02114, USA.

OBJECTIVE To review antithymocyte immunoglobulin (ATG) and its current role in the treatment of severe aplastic anemia (SAA), focusing on ATG in immunosuppressive therapy compared with bone marrow transplantation (BMT). METHODS A MEDLINE search (1966 to 1996) of English-language literature and human subjects pertaining to ATG and BMT therapy in SAA was performed. Additional literature was obtained from reference lists of pertinent articles identified through the search. METHODS All articles were considered for possible inclusion in the review. Pertinent information, as judged by the authors, was selected for discussion. RESULTS The hallmark of SAA is pancytopenia and bone marrow hypoplasia. Although the etiology in a majority of cases remains unknown, current data implicate an immune-mediated destruction of stem cells. ATG is a potent immunosuppressive agent and has emerged as an important therapy for patients with SAA. The exact mechanism of immunosuppressive action is not fully understood, although ATG appears to disrupt cell-mediated immune responses resulting in inhibition or altered T-cell function. Numerous trials have evaluated the use of ATG both as monotherapy and in combination with other immunosuppressive agents. Treatment with ATG in SAA has demonstrated a 40-70% response rate. Data suggest that intensive immunosuppressive therapy with ATG in combination with cyclosporine may provide the optimal immunosuppressive treatment. Questions still remain concerning complications and long-term survival of the patients. Although more than a 2-year follow-up shows a decline in mortality, a plateau in the survival curve was not achieved. BMT is a potential treatment for SAA. Although there is a high initial mortality due to treatment-related toxicities, successful marrow engraftment provides a cure for SAA. Many patients (75-90%) experience long-term survival after allogenic BMT. Age, donor availability, and severity of disease limit the number of eligible patients. CONCLUSIONS Due to excellent results with BMT, it has become the therapy of choice for selected patients with SAA. For patients who are not eligible for BMT, intensive immunosuppressive therapy with ATG and cyclosporine is recommended. Further study to better understand the pathogenesis of SAA and prevent treatment-related complications is essential to provide the best care to all patients.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000741 Anemia, Aplastic A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements. Anemia, Hypoplastic,Aplastic Anaemia,Aplastic Anemia,Anaemia, Aplastic,Aplastic Anaemias,Aplastic Anemias,Hypoplastic Anemia,Hypoplastic Anemias
D000961 Antilymphocyte Serum Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION. ATGAM,Antilymphoblast Globulins,Antilymphocyte Antibodies,Antilymphocyte Globulin,Lymphocytotoxic Antibodies,Anti-Thymocyte Globulin,Antilymphocyte Immunoglobulin,Antithymocyte Globulin,Antithymoglobulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin,Lymphocyte Immune Globulin, Anti-Thymocyte Globulin (Equine),Pressimmune,Anti Thymocyte Globulin,Anti-Thymocyte Globulins,Antibodies, Antilymphocyte,Antibodies, Lymphocytotoxic,Antibody, Antilymphocyte,Antibody, Lymphocytotoxic,Antilymphoblast Globulin,Antilymphocyte Antibody,Antilymphocyte Globulins,Antilymphocyte Immunoglobulins,Antilymphocyte Serums,Antithymocyte Globulins,Antithymoglobulins,Globulin, Anti-Thymocyte,Globulin, Antilymphoblast,Globulin, Antilymphocyte,Globulin, Antithymocyte,Globulins, Anti-Thymocyte,Globulins, Antilymphoblast,Globulins, Antilymphocyte,Globulins, Antithymocyte,Immunoglobulin, Antilymphocyte,Immunoglobulins, Antilymphocyte,Lymphocyte Immune Globulin, Anti Thymocyte Globulin,Lymphocytotoxic Antibody,Serum, Antilymphocyte,Serums, Antilymphocyte
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting

Related Publications

C Colby, and C A Stoukides, and T R Spitzer
December 1977, Bulletin de la Societe des sciences medicales du Grand-Duche de Luxembourg,
C Colby, and C A Stoukides, and T R Spitzer
April 1986, Deutsche medizinische Wochenschrift (1946),
C Colby, and C A Stoukides, and T R Spitzer
December 1993, Journal of the Formosan Medical Association = Taiwan yi zhi,
C Colby, and C A Stoukides, and T R Spitzer
January 1998, Medicina,
C Colby, and C A Stoukides, and T R Spitzer
August 1991, Bone marrow transplantation,
C Colby, and C A Stoukides, and T R Spitzer
December 2014, Hematology/oncology clinics of North America,
C Colby, and C A Stoukides, and T R Spitzer
October 1991, Seminars in hematology,
C Colby, and C A Stoukides, and T R Spitzer
September 2017, Bone marrow transplantation,
Copied contents to your clipboard!