Brain hypometabolism of glucose in anorexia nervosa: normalization after weight gain. 1996

V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles, Belgium.

Using positron emission tomography and (18-F)-fluorodeoxyglucose, we studied cerebral glucose metabolism in 10 anorectic girls within their underweight state and after weight gain. Ten age- and sex-matched healthy volunteers were used as controls. Both groups were scanned during rest, eyes closed and with low ambient noise. In absolute values, the underweight anorectic patients, when compared to control subjects, showed a global (p = 0.002) and regional (p < or = 0.001) hypometabolism of glucose which normalized with weight gain. In relative values, no global difference could be assessed between underweight anorectic patients and controls but a trend can, nevertheless, be observed toward parietal and superior frontal cortex hypometabolism associated with a relative hypermetabolism in the caudate nuclei and in the inferior frontal cortex. After weight gain, all regions normalized for absolute and relative values, although a trend appears toward relative parietal hypometabolism and inferior frontal cortex hypermetabolism in weight gain anorectic patients. Absolute brain glucose hypometabolism might result from neuroendocrinological or morphological aspects of anorexia nervosa or might be the expression of altered neurotransmission following deficient nutritional state. As some differences exists in relative values in underweight patients and tend to persist in weight gain states, this could support a potential abnormal cerebral functioning, a different reaction to starvation within several regions of the brain or different restoration rates according to the region.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D005625 Frontal Lobe The part of the cerebral hemisphere anterior to the central sulcus, and anterior and superior to the lateral sulcus. Brodmann Area 8,Brodmann's Area 8,Frontal Cortex,Frontal Eye Fields,Lobus Frontalis,Supplementary Eye Field,Area 8, Brodmann,Area 8, Brodmann's,Brodmanns Area 8,Cortex, Frontal,Eye Field, Frontal,Eye Field, Supplementary,Eye Fields, Frontal,Frontal Cortices,Frontal Eye Field,Frontal Lobes,Lobe, Frontal,Supplementary Eye Fields
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
February 1979, Acta endocrinologica,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
April 1981, The American journal of clinical nutrition,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
September 2000, The American journal of psychiatry,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
February 1997, Journal of clinical and experimental neuropsychology,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
January 2003, The International journal of eating disorders,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
August 2001, Journal of clinical and experimental neuropsychology,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
April 2023, Translational psychiatry,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
June 2005, The American journal of clinical nutrition,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
January 1997, International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity,
V Delvenne, and S Goldman, and V De Maertelaer, and Y Simon, and A Luxen, and F Lotstra
July 2011, The International journal of eating disorders,
Copied contents to your clipboard!