Dietary fat affects heat production and other variables of equine performance, under hot and humid conditions. 1996

D S Kronfeld
Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061-0306, USA.

Does dietary fat supplementation during conditioning improve athletic performance, especially in the heat? Fat adaptation has been used to increase energy density, decrease bowel bulk and faecal output and reduce health risks associated with hydrolysable carbohydrate overload. It may also reduce spontaneous activity and reactivity (excitability), increase fatty acid oxidation, reduce CO2 production and associated acidosis, enhance metabolic regulation of glycolysis, improve both aerobic and anaerobic performance and substantially reduce heat production. A thermochemical analysis of ATP generation showed the least heat release during the direct oxidation of long chain fatty acids, which have a 3% advantage over glucose and 20 to 30% over short chain fatty acids and amino acids. Indirect oxidation via storage as triglyceride increased heat loss during ATP generation by 3% for stearic acid, 65% for glucose and 174% for acetic acid. Meal feeding and nutrient storage, therefore, accentuates the advantage of dietary fat. A calorimetric model was based on initial estimates of net energy for competitive work (10.76 MJ for the Endurance Test of an Olympic level 3-day-event), other work (14.4 MJ/day) and maintenance (36 MJ), then applied estimates of efficiencies to derive associated heat productions for the utilisation of 3 diets, Diet A: hay (100), Diet B: hay and oats (50:50) and Diet C: hay, oats and vegetable oil (45:45:10), the difference between the last 2 diets representing fat adaptation. During a 90.5 min speed and stamina test, heat production was estimated as 37, 35.4 and 34.6 MJ for the 3 diets, respectively, an advantage 0.8 MJ less heat load for the fat adapted horse, which would reduce water needed for evaporation by 0.33 kg and reduce body temperature increase by about 0.07 degree C. Total estimated daily heat production was 105, 93 and 88 MJ for the 3 diets, respectively, suggesting a 5 MJ advantage for the fat adapted horse (Diet C vs. Diet B). Estimated intake energy was 348, 269 and 239 MJ for the 3 diets, respectively, and corresponding daily intakes as fed were 22.2, 16.6 and 12.9 kg, an advantage of 3.7 kg for the fat adapted horse. Water requirement was estimated to decrease by about 6 kg/day in the fat adapted horse: 4 kg less faecal water output and 2 kg less water for evaporation. This model indicated that the fat supplemented diet reduced daily heat load by 5%, feed intake by 22%, faecal output (and bowel ballast) by 31% and water requirement by 12%. The advantage of fat supplementation over hay and oats was in general about half that gained by hay and oats over hay alone.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D001833 Body Temperature Regulation The processes of heating and cooling that an organism uses to control its temperature. Heat Loss,Thermoregulation,Regulation, Body Temperature,Temperature Regulation, Body,Body Temperature Regulations,Heat Losses,Loss, Heat,Losses, Heat,Regulations, Body Temperature,Temperature Regulations, Body,Thermoregulations
D002149 Energy Intake Total number of calories taken in daily whether ingested or by parenteral routes. Caloric Intake,Calorie Intake,Intake, Calorie,Intake, Energy
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006109 Poaceae A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses. Alopecurus,Arundo,Gramineae,Grasses,Imperata,Grass,Imperata cylindrica
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic

Related Publications

D S Kronfeld
August 1976, Voenno-meditsinskii zhurnal,
D S Kronfeld
June 1986, Military medicine,
D S Kronfeld
August 1972, Aerospace medicine,
D S Kronfeld
October 2014, Sports medicine (Auckland, N.Z.),
Copied contents to your clipboard!