Alternation of atrioventricular nodal conduction time during atrioventricular reentrant tachycardia: are dual pathways necessary? 1996

F Amellal, and K Hall, and L Glass, and J Billette
Département de Physiologie, Faculté de Médecine, Université de Montreal, Quebec, Canada.

BACKGROUND Alternation of atrial cycle length and AV nodal conduction time (NCT) is often observed during AV reentrant tachycardia. Both AV nodal dual pathway and rate-dependent function have been postulated to be involved in this phenomenon. This study was designed to determine the respective role of these two mechanisms in the alternation observed in an in vitro model of orthodromic AV reentrant tachycardia. RESULTS The tachycardia was produced by detecting each His-bundle activation and stimulating the atrium after a retrograde delay, thereby simulating retrograde pathway conduction, in six isolated rabbit heart preparations. After a 5-minute stabilization period at a fast rate, the retrograde delay was decremented by 2 msec every minute until nodal blocks occurred. We observed a sequential alternation of the cycle length and NCT in four preparations in the short retrograde delay range. The magnitude of the alternation gradually increased as the retrograde delay was decreased and reached 4.6 +/- 0.5 msec during 1:1 conduction. The alternation increased further just prior to termination of the tachycardia by an AV nodal block. None of the preparations showed discontinuous AV nodal recovery curves. Moreover, an electrode positioned over the endocardial surface of the node showed that the alternation developed distally to the nodal inputs, which are believed to constitute a major component of dual pathways. A mathematical model predicted the alternation from known characteristics of rate-dependent nodal functional properties. CONCLUSIONS NCT and cycle length alternation can arise during orthodromic AV reentrant tachycardia when the retrograde delay is sufficiently short. The characteristics of the alternation, presence of continuous recovery curves, intranodal location of the alternation, and mathematical modeling suggest that the alternation is predictable from the known functional properties of the AV node without postulating dual pathway physiology.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001283 Atrioventricular Node A small nodular mass of specialized muscle fibers located in the interatrial septum near the opening of the coronary sinus. It gives rise to the atrioventricular bundle of the conduction system of the heart. AV Node,A-V Node,Atrio-Ventricular Node,A V Node,A-V Nodes,AV Nodes,Atrio Ventricular Node,Atrio-Ventricular Nodes,Atrioventricular Nodes,Node, A-V,Node, AV,Node, Atrio-Ventricular,Node, Atrioventricular,Nodes, A-V,Nodes, AV,Nodes, Atrio-Ventricular,Nodes, Atrioventricular
D013611 Tachycardia, Atrioventricular Nodal Reentry Abnormally rapid heartbeats caused by reentry of atrial impulse into the dual (fast and slow) pathways of ATRIOVENTRICULAR NODE. The common type involves a blocked atrial impulse in the slow pathway which reenters the fast pathway in a retrograde direction and simultaneously conducts to the atria and the ventricles leading to rapid HEART RATE of 150-250 beats per minute. Atrioventricular Nodal Re-Entrant Tachycardia,Atrioventricular Nodal Reentry Tachycardia,Atrioventricular Reentrant Tachycardia,Tachycardia, AV Nodal Reentrant,AV Nodal Reentrant Tachycardia,Atrioventricular Nodal Reentrant Tachycardia,Atrioventricular Nodal Re Entrant Tachycardia,Atrioventricular Reentrant Tachycardias,Reentrant Tachycardia, Atrioventricular,Tachycardia, Atrioventricular Reentrant

Related Publications

F Amellal, and K Hall, and L Glass, and J Billette
October 1997, The American journal of cardiology,
F Amellal, and K Hall, and L Glass, and J Billette
September 1978, The American journal of cardiology,
F Amellal, and K Hall, and L Glass, and J Billette
January 1988, Journal of electrocardiology,
F Amellal, and K Hall, and L Glass, and J Billette
January 1996, Ryoikibetsu shokogun shirizu,
F Amellal, and K Hall, and L Glass, and J Billette
July 1984, The Medical clinics of North America,
F Amellal, and K Hall, and L Glass, and J Billette
August 2010, Circulation,
F Amellal, and K Hall, and L Glass, and J Billette
April 1998, Critical care medicine,
F Amellal, and K Hall, and L Glass, and J Billette
January 2017, AACN advanced critical care,
F Amellal, and K Hall, and L Glass, and J Billette
August 2002, Journal of cardiovascular electrophysiology,
Copied contents to your clipboard!