Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. 1996

N Sera, and H Tokiwa, and N Miyata
Fukuoka Institute of Health and Environmental Sciences, Japan.

Fullerene C60 dissolved in polyvinylpyrrolidone was mutagenic for Salmonella strains TA102, TA104 and YG3003 in the presence of rat liver microsomes when it was irradiated by visible light. The mutagenicity was elevated in strain YG3003, a repair enzyme-deficient mutant of TA102. The mutation was reduced in the presence of beta-carotene and parabromophenacyl bromide, a scavenger and an inhibitor, respectively, of phospholipase. The results suggest that singlet oxygen was generated by irradiating the C60 by visible light and that the mutagenicity was due to oxidized phospholipids in rat liver microsomes. Of the phospholipids in rat liver microsomes, the linoleate fraction isolated by high performance liquid chromatography was a major component, and played an important role in mutagenicity. Methyl linoleate, which was prepared for gas chromatographic analysis, was readily oxidized to hydroperoxymethyl linoleate, and associated with both 10- and 12-hydroxyl derivatives with a double bond in chemical structure by singlet oxygen: radicals to the hydroxyl function were probably generated. Because of the instability of the hydroxymethyl linoleate radicals, guanine residues generated radicals. The results of ESR spectrum analysis suggested generation of radicals at the guanine base but not thymine, cytosine and adenine bases as estimated with the g value of 2.0150. On the other hand, the singlet oxygen-generating C60 formed 8-hydroxydeoxyguanosine (8-OH-dG) upon treatment with 2' deoxyguanosine and microsomes or linoleate. The formation of 8-OH-dG was highly elevated in the presence of microsomes and linoleate. The level of 8-OH-dG formed with and without the microsome fraction was 47 and 9.6 units, respectively, per 10(4) deoxyguanosine. It was considered that the mechanism is indirect action of singlet oxygen due to lipid peroxidation of linoleate that causes oxidative DNA damage.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008297 Male Males
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D002244 Carbon A nonmetallic element with atomic symbol C, atomic number 6, and atomic weight [12.0096; 12.0116]. It may occur as several different allotropes including DIAMOND; CHARCOAL; and GRAPHITE; and as SOOT from incompletely burned fuel. Carbon-12,Vitreous Carbon,Carbon 12,Carbon, Vitreous
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000080242 8-Hydroxy-2'-Deoxyguanosine Common oxidized form of deoxyguanosine in which C-8 position of guanine base has a carbonyl group. 2'-Deoxy-7,8-Dihydro-8-Oxoguanosine,2'-Deoxy-8-Hydroxyguanosine,2'-Deoxy-8-Oxo-7,8-Dihydroguanosine,2'-Deoxy-8-Oxoguanosine,7,8-Dihydro-8-Oxo-2'-Deoxyguanosine,7-Hydro-8-Oxodeoxyguanosine,8-Hydroxydeoxyguanosine,8-Oxo-2'-Deoxyguanosine,8-Oxo-7,8-Dihydro-2'-Deoxyguanosine,8-Oxo-7,8-Dihydrodeoxyguanosine,8-Oxo-7-Hydrodeoxyguanosine,8-Oxo-Deoxyguanosine,8OHdG,8-OH-dG,8-oxo-dG,8-oxo-dGuo,8-oxodG,8-oxodGuo,2' Deoxy 7,8 Dihydro 8 Oxoguanosine,2' Deoxy 8 Hydroxyguanosine,2' Deoxy 8 Oxo 7,8 Dihydroguanosine,2' Deoxy 8 Oxoguanosine,7 Hydro 8 Oxodeoxyguanosine,7,8 Dihydro 8 Oxo 2' Deoxyguanosine,8 Hydroxy 2' Deoxyguanosine,8 Hydroxydeoxyguanosine,8 Oxo 2' Deoxyguanosine,8 Oxo 7 Hydrodeoxyguanosine,8 Oxo 7,8 Dihydro 2' Deoxyguanosine,8 Oxo 7,8 Dihydrodeoxyguanosine,8 Oxo Deoxyguanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Sera, and H Tokiwa, and N Miyata
February 1977, Chemico-biological interactions,
N Sera, and H Tokiwa, and N Miyata
February 2004, Free radical biology & medicine,
N Sera, and H Tokiwa, and N Miyata
January 2000, Redox report : communications in free radical research,
N Sera, and H Tokiwa, and N Miyata
September 1992, Physical review. B, Condensed matter,
N Sera, and H Tokiwa, and N Miyata
November 2021, Photochemistry and photobiology,
N Sera, and H Tokiwa, and N Miyata
January 1982, Doklady Akademii nauk SSSR,
N Sera, and H Tokiwa, and N Miyata
October 2003, Journal of the American Chemical Society,
N Sera, and H Tokiwa, and N Miyata
June 2022, Environmental science & technology,
Copied contents to your clipboard!