Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. 1996

R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
Department of Zoology, University of Aberdeen, United Kingdom.

Mechanisms of anoxia tolerance were investigated in crucian carp. Rates of protein synthesis were calculated in selected tissues of normoxic and anoxic animals. Exposure to 48 h of anoxia resulted in a significant reduction in protein synthesis in the liver (> 95%), heart (53%), and red and white muscle (52 and 56%, respectively), whereas brain protein synthesis rates were unaffected. Seven days of anoxia produced similar results. After 24 h of recovery from a 48-h anoxic period, protein synthesis rates had virtually returned to normoxic values. The effect of anoxia on the amount of RNA (relative to protein) varied depending on the tissue and also the length of exposure (except in the brain, where it was consistently reduced). However, the effect on RNA translational efficiency was purely tissue specific (i.e., independent of exposure time) and was unaffected in the heart, reduced in the liver and red and white muscle, and increased in the brain. Downregulation of protein synthesis on a tissue-specific basis appears to be a significant mechanism for energy conservation as well as maintaining neural function, thus promoting survival during anoxia.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002347 Carps Common name for a number of different species of fish in the family Cyprinidae. This includes, among others, the common carp, crucian carp, grass carp, and silver carp. Carassius carassius,Crucian Carp,Cyprinus,Grass Carp,Carp,Ctenopharyngodon idellus,Cyprinus carpio,Hypophthalmichthys molitrix,Koi Carp,Silver Carp,Carp, Crucian,Carp, Grass,Carp, Koi,Carp, Silver,Carps, Crucian,Carps, Grass,Carps, Silver,Crucian Carps,Grass Carps,Silver Carps
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
April 2009, Proteomics,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
January 2001, Journal of neurophysiology,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
December 2016, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
January 2023, PeerJ,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
May 2024, The Journal of experimental biology,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
August 1994, The American journal of physiology,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
March 1999, Brain research,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
August 2018, Environmental pollution (Barking, Essex : 1987),
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
March 2016, Genetics and molecular research : GMR,
R W Smith, and D F Houlihan, and G E Nilsson, and J G Brechin
November 2017, The Journal of experimental biology,
Copied contents to your clipboard!