Mammary gland neoplasia in long-term rodent studies. 1996

I H Russo, and J Russo
League of Women Against Cancer, LOWAC, Corp., Rydal, PA 19046, USA.

Breast cancer, the most frequent spontaneous malignancy diagnosed in women in the western world, is continuously increasing in incidence in industrialized nations. Although breast cancer develops in women as the result of a combination of external and endogenous factors such as exposure to ionizing radiation, diet, socioeconomic status, and endocrinologic, familial, or genetic factors, no specific etiologic agent(s) or the mechanisms responsible of the disease has been identified as yet. Thus, experimental models that exhibit the same complex interactions are needed for testing various mechanisms and for assessing the carcinogenic potential of given chemicals. Rodent mammary carcinomas represent such a model to a great extent because, in these species, mammary cancer is a multistep complex process that can be induced by either chemicals, radiation, viruses, or genetic factors. Long-term studies in rodent models have been particularly useful for dissecting the initiation, promotion, and progression steps of carcinogenesis. The susceptibility of the rodent mammary gland to develop neoplasms has made this organ a unique target for testing the carcinogenic potential of specific genotoxic chemicals and environmental agents. Mammary tumors induced by indirect- or direct-acting carcinogens such as 7, 12-dimethlbenz(a)anthracene or N-methyl-N-nitrosourea are, in general, hormone dependent adenocarcinomas whose incidence, number of tumors per animal, tumor latency, and tumor type are influenced by the age, reproductive history, and endocarinologic milieu of the host at the time of carcinogen exposure. Rodent models are informative in the absence of human data. They have provided valuable information on the dose and route of administration to be used and optimal host conditions for eliciting maximal tumorigenic response. Studies of the influence of normal gland development on the pathogenesis of chemically induced mammary carcinomas have clarified the role of differentiation in cancer initiation. Comparative studies with the development of the human breast and the pathogenesis of breast cancer have contributed to validate rodent-to-human extrapolations. However, it has not been definitively established what type of information is necessary for human risk assessment, whether currently toxicity testing methodologies are sufficient for fulfilling those needs, or whether treatment-induced tumorigenic responses in rodents are predictive of potential human risk. An alternative to the traditional bioassays are mechanism-based toxicology and molecular and cellular approaches, combined with comparative in vitro systems. These approaches might allow the rapid screen of chemicals for setting priorities for further studies to determine the dose-response relationship for chemical effects at low doses, to assess effects other than mutagenesis and/or tumorigenesis, or to establish qualitative and quantitative relationships of biomarkers to toxic effects. Until there is enough information on the predictive value of mechanism-based toxicology for risk assessment, this approach should be used in conjunction with and validated by the traditional in vivo long-term bioassays.

UI MeSH Term Description Entries
D008137 Longitudinal Studies Studies in which variables relating to an individual or group of individuals are assessed over a period of time. Bogalusa Heart Study,California Teachers Study,Framingham Heart Study,Jackson Heart Study,Longitudinal Survey,Tuskegee Syphilis Study,Bogalusa Heart Studies,California Teachers Studies,Framingham Heart Studies,Heart Studies, Bogalusa,Heart Studies, Framingham,Heart Studies, Jackson,Heart Study, Bogalusa,Heart Study, Framingham,Heart Study, Jackson,Jackson Heart Studies,Longitudinal Study,Longitudinal Surveys,Studies, Bogalusa Heart,Studies, California Teachers,Studies, Jackson Heart,Studies, Longitudinal,Study, Bogalusa Heart,Study, California Teachers,Study, Longitudinal,Survey, Longitudinal,Surveys, Longitudinal,Syphilis Studies, Tuskegee,Syphilis Study, Tuskegee,Teachers Studies, California,Teachers Study, California,Tuskegee Syphilis Studies
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004781 Environmental Exposure The exposure to potentially harmful chemical, physical, or biological agents in the environment or to environmental factors that may include ionizing radiation, pathogenic organisms, or toxic chemicals. Exposure, Environmental,Environmental Exposures,Exposures, Environmental
D005260 Female Females
D006728 Hormones Chemical substances having a specific regulatory effect on the activity of a certain organ or organs. The term was originally applied to substances secreted by various ENDOCRINE GLANDS and transported in the bloodstream to the target organs. It is sometimes extended to include those substances that are not produced by the endocrine glands but that have similar effects. Hormone,Hormone Receptor Agonists,Agonists, Hormone Receptor,Receptor Agonists, Hormone

Related Publications

I H Russo, and J Russo
September 1996, Environmental health perspectives,
I H Russo, and J Russo
August 1977, In vitro,
I H Russo, and J Russo
October 2003, Journal of mammary gland biology and neoplasia,
I H Russo, and J Russo
January 2000, Breast cancer research : BCR,
I H Russo, and J Russo
January 2007, Breast disease,
I H Russo, and J Russo
March 1988, Journal of the National Cancer Institute,
I H Russo, and J Russo
January 1986, Fundamental and applied toxicology : official journal of the Society of Toxicology,
I H Russo, and J Russo
January 2001, Journal of mammary gland biology and neoplasia,
I H Russo, and J Russo
May 1998, Veterinary pathology,
I H Russo, and J Russo
July 2014, Journal of mammary gland biology and neoplasia,
Copied contents to your clipboard!