Single-headed scallop myosin and regulation. 1996

V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110, USA.

Single-headed scallop myosin (shM) was prepared by papain digestion of filamentous scallop myosin and purified by hydrophobic interaction chromatography. The shM preparation consisted of equimolar amounts of polypeptides corresponding to an intact heavy chain, rod chain, essential light chain, and regulatory light chain. In electron micrographs the shape of shM showed the presence of a single head domain to which a normal looking rod was attached. Myosin and shM bound Ca2+ with association constants of 5 x 10(6) and 11 x 10(6) M-1, respectively. The ATPase activity of shM was activated about 3-fold by Ca2+. Both heads of myosin and shM had comparable ATPase activities in the presence of Ca2+. The activation of the ATPase activity of single-headed scallop myosin by Ca2+ paralleled closely the Ca2+ binding, in sharp contrast to the activation of intact myosin by Ca2+, which is highly cooperative. Single turnover experiments of myosin with radioactive ATP gave a half-life for the ATPase cycle of approximately 3 min in the presence of EGTA, whereas that of single-headed myosin was shorter than approximately 30 s, which was the resolution time of these measurements. The results suggest that the presence of two heads, as well as the attachment of the head to the coiled coil rod, contribute to the regulation of scallop myosin by Ca2+.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008974 Mollusca A phylum of the kingdom Metazoa. Mollusca have soft, unsegmented bodies with an anterior head, a dorsal visceral mass, and a ventral foot. Most are encased in a protective calcareous shell. It includes the classes GASTROPODA; BIVALVIA; CEPHALOPODA; Aplacophora; Scaphopoda; Polyplacophora; and Monoplacophora. Molluscs,Mollusks,Mollusc,Molluscas,Mollusk
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
November 1979, Biochemistry,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
December 1997, Biochemistry,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
March 1974, Journal of mechanochemistry & cell motility,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
January 1988, Bio Systems,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
February 1983, Nature,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
April 1978, Journal of molecular biology,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
October 1982, Journal of biochemistry,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
April 2002, The Journal of biological chemistry,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
November 1990, Journal of molecular biology,
V N Kalabokis, and P Vibert, and M L York, and A G Szent-Györgyi
September 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!