Turbulent flow of red cells in dilute suspensions. Effect on kinetics of O2 uptake. 1977

M Gad-El-Hak, and J B Morton, and H Kutchal

The turbulent flow properties of dilute (0.06% by volume) suspensions of human red blood cells in 4-mm-bore glass tubing were estimated by laser anemometry. The flow properties of the dilute red cell suspension were similar to those of a dilute suspension of polystyrene spheres (0.5 micron diameter) in isotonic NaCl solution. Flow was found to be laminar when the Reynolds number was below 2,000, transitional in the range of Reynolds numbers from 2,000 to 3,000, and fully turbulent above Reynolds number 3,000. These results differ from previous studies of more concentrated red cell suspensions. The length scales of the turbulence were also estimated: at a Reynolds number near 4,000 the macroscale is about 1.25 mm, the Taylor microscale is about 0.85 mm, and the Kolmogoroff scale is near 0.075 mm. The results are discussed in relation to previous measurements of the rate of oxygen uptake by dilute red cell suspensions in the flow-type rapid reaction apparatus. Our results suggest that under the conditions of most of these oxygen uptake measurements, the turbulent flow is characterized by eddies about 1 mm across, mixing with each other on a time scale of about 45 ms. Since most of the reported oxygen uptake measurements involve a similar time scale, it is possible that an effective "unstirred layer" influenced the reported rate of oxygen uptake.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007834 Lasers An optical source that emits photons in a coherent beam. Light Amplification by Stimulated Emission of Radiation (LASER) is brought about using devices that transform light of varying frequencies into a single intense, nearly nondivergent beam of monochromatic radiation. Lasers operate in the infrared, visible, ultraviolet, or X-ray regions of the spectrum. Masers,Continuous Wave Lasers,Pulsed Lasers,Q-Switched Lasers,Continuous Wave Laser,Laser,Laser, Continuous Wave,Laser, Pulsed,Laser, Q-Switched,Lasers, Continuous Wave,Lasers, Pulsed,Lasers, Q-Switched,Maser,Pulsed Laser,Q Switched Lasers,Q-Switched Laser
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries

Related Publications

M Gad-El-Hak, and J B Morton, and H Kutchal
January 1985, Respiration physiology,
M Gad-El-Hak, and J B Morton, and H Kutchal
May 2020, Biophysical journal,
M Gad-El-Hak, and J B Morton, and H Kutchal
September 2012, The Journal of physiology,
M Gad-El-Hak, and J B Morton, and H Kutchal
December 1986, Federation proceedings,
M Gad-El-Hak, and J B Morton, and H Kutchal
November 2003, Journal of applied physiology (Bethesda, Md. : 1985),
M Gad-El-Hak, and J B Morton, and H Kutchal
January 2021, Frontiers in physiology,
M Gad-El-Hak, and J B Morton, and H Kutchal
February 2000, Journal of colloid and interface science,
M Gad-El-Hak, and J B Morton, and H Kutchal
August 1989, The Biochemical journal,
M Gad-El-Hak, and J B Morton, and H Kutchal
March 1966, The Journal of general physiology,
Copied contents to your clipboard!