Effects of bleaching and regeneration on the purple membrane structure of Halobaterium halobium. 1977

B Becher, and J Y Cassim

Sequential bleaching in the presence of hydroxylamine and subsequent regeneration of the purple membrane of Halobacterium halobium was studied by concomitant monitoring of its absorption and circular dichroic spectra in order to ascertain its effects on protein interaction(s) (which may result in possible excitonic interaction between the retinal chromophores), chromophore-apoprotein interaction(s), and protein conformational stability in the membrane. It was concluded that (a) although experimental results are consistent with an exciton mechanism for the interaction between retinal pi - pi* (NV(1)) transition movements in the purple membrane, no evidence for such a mechanism for interaction between retinaloxime transition moments is apparent in the case of the bleached membrane; (b) the bacteriorhodopsin molecules organized in clusters of three in the membrane appear to bleach simultaneously; (c) the retinaloxime produced on bleaching the purple membrane in the presence of hydroxylamine is strongly optically active, because of dissymmetry-inducing and/or -selecting constraints on the chromophore by a component of the membrane (most likely the apoprotein), and when the membrane is regenerated by the addition of retinal, these constraints are lost; and (d) evidence from ultraviolet absorption and circular dichroic spectra suggests that the membrane apoprotein undergoes appreciable conformational changes involving tertiary structure on bleaching with no significant secondary structure involvement. These results are compared with recently reported results from this laboratory on the effects of bleaching on the bovine rod outer segment disk membrane structure.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D006898 Hydroxylamines Organic compounds that contain the (-NH2OH) radical.
D012168 Retinal Pigments Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells. Retinal Photoreceptor Pigment,Retinal Pigment,Visual Pigment,Visual Pigments,Retinal Photoreceptor Pigments,Photoreceptor Pigment, Retinal,Photoreceptor Pigments, Retinal,Pigment, Retinal,Pigment, Retinal Photoreceptor,Pigment, Visual,Pigments, Retinal,Pigments, Retinal Photoreceptor,Pigments, Visual
D012172 Retinaldehyde A diterpene derived from the carotenoid VITAMIN A which functions as the active component of the visual cycle. It is the prosthetic group of RHODOPSIN (i.e., covalently bonded to ROD OPSIN as 11-cis-retinal). When stimulated by visible light, rhodopsin transforms this cis-isomer of retinal to the trans-isomer (11-trans-retinal). This transformation straightens-out the bend of the retinal molecule and causes a change in the shape of rhodopsin triggering the visual process. A series of energy-requiring enzyme-catalyzed reactions convert the 11-trans-retinal back to the cis-isomer. 11-trans-Retinal,3,7-dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-Nonatetraenal,Axerophthal,Retinal,Retinene,Retinyl Aldehydde,Vitamin A Aldehyde,all-trans-Retinal,11-cis-Retinal,11 cis Retinal,11 trans Retinal,Aldehydde, Retinyl,Aldehyde, Vitamin A,all trans Retinal
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

B Becher, and J Y Cassim
June 1977, Biophysics of structure and mechanism,
B Becher, and J Y Cassim
October 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
B Becher, and J Y Cassim
January 1977, Annual review of biophysics and bioengineering,
B Becher, and J Y Cassim
April 1977, Biophysics of structure and mechanism,
B Becher, and J Y Cassim
August 1973, European journal of biochemistry,
B Becher, and J Y Cassim
April 1978, Biophysical journal,
B Becher, and J Y Cassim
February 1981, Biophysical journal,
B Becher, and J Y Cassim
May 1978, Biochimica et biophysica acta,
Copied contents to your clipboard!