(+)-SKF-10,047 and dextromethorphan ameliorate conditioned fear stress through the activation of phenytoin-regulated sigma 1 sites. 1996

H Kamei, and T Kameyama, and T Nabeshima
Department of Chemical Pharmacology, Meijo University, Nagoya, Japan.

Mice exhibited a marked suppression of motility when they were replaced in the same environment in which they had previously received an electric footshock. This psychological stress-induced motor suppression, known as conditioned fear stress, was dose dependently attenuated by (+)-N-allylnormetazocine ((+)-SKF-10,047) and by dextromethorphan, putative sigma receptor agonists, but not by other sigma receptor ligands, (+)-pentazocine and 1,3-di-(2-tolyl)guanidine (DTG). Unlike (+)-SKF-10,047 and dextromethorphan, the non-competitive NMDA receptor antagonists, phencyclidine and dizocilpine, attenuated the conditioned fear stress only at high doses that induced marked hypermotility in non-stressed mice. The effects of (+)-SKF-10,047 and dextromethorphan, but not phencyclidine and dizocilpine, on the conditioned fear stress were antagonized by the sigma receptor antagonists, NE-100 (N,N-dipropyl-2-[4-methoxy-3-(2- phenylethoxy)phenyl]-ethylamine monohydrochloride) and BMY-14802 (alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazine- butanol hydrochloride). Interestingly, the effects of (+)-SKF-10,047 and dextromethorphan on the stress response were enhanced by combination with phenytoin, an anticonvulsant drug, whereas those of (+)- pentazocine, DTG, phencyclidine, and dizocilpine were not. These results suggest that activation of phenytoin-regulated type sigma 1 receptors, but not of phencyclidine receptors, is involved in the ameliorating effects of (+)-SKF-10,047 and dextromethorphan on stress-induced motor suppression.

UI MeSH Term Description Entries
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D010620 Phenazocine An opioid analgesic with actions and uses similar to MORPHINE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1095) Phenbenzorphan,Phenethylazocine,Narphen,Phenazocine Hydrobromide,Hydrobromide, Phenazocine
D010622 Phencyclidine A hallucinogen formerly used as a veterinary anesthetic, and briefly as a general anesthetic for humans. Phencyclidine is similar to KETAMINE in structure and in many of its effects. Like ketamine, it can produce a dissociative state. It exerts its pharmacological action through inhibition of NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE). As a drug of abuse, it is known as PCP and Angel Dust. 1-(1-Phenylcyclohexyl)piperidine,Angel Dust,CL-395,GP-121,Phencyclidine Hydrobromide,Phencyclidine Hydrochloride,Sernyl,Serylan,CL 395,CL395,Dust, Angel,GP 121,GP121
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D003915 Dextromethorphan Methyl analog of DEXTRORPHAN that shows high affinity binding to several regions of the brain, including the medullary cough center. This compound is an NMDA receptor antagonist (RECEPTORS, N-METHYL-D-ASPARTATE) and acts as a non-competitive channel blocker. It is one of the widely used ANTITUSSIVES, and is also used to study the involvement of glutamate receptors in neurotoxicity. d-Methorphan,Delsym,Dextromethorphan Hydrobromide,Dextromethorphan Hydrobromide, (+-)-Isomer,Dextromethorphan Hydrobromide, Monohydrate,Dextromethorphan Hydrochloride,Dextromethorphan, (+-)-Isomer,Racemethorphan,Hydrobromide, Dextromethorphan,Hydrochloride, Dextromethorphan
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Kamei, and T Kameyama, and T Nabeshima
May 1990, European journal of pharmacology,
H Kamei, and T Kameyama, and T Nabeshima
September 2000, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
H Kamei, and T Kameyama, and T Nabeshima
May 1991, The Journal of pharmacology and experimental therapeutics,
H Kamei, and T Kameyama, and T Nabeshima
October 1981, The Journal of pharmacology and experimental therapeutics,
H Kamei, and T Kameyama, and T Nabeshima
January 1989, Pharmacology, biochemistry, and behavior,
H Kamei, and T Kameyama, and T Nabeshima
November 1983, Pharmacology, biochemistry, and behavior,
H Kamei, and T Kameyama, and T Nabeshima
April 1986, Journal of neurochemistry,
H Kamei, and T Kameyama, and T Nabeshima
September 1983, European journal of pharmacology,
H Kamei, and T Kameyama, and T Nabeshima
January 1992, European journal of pharmacology,
Copied contents to your clipboard!