1,3-Butadiene metabolism by lung airways isolated from mice and rats. 1996

M J Seaton, and C G Plopper, and J A Bond
Chemical Industry Institute of Toxicology, Research Triangle Park, NC 27709, USA.

1,3-Butadiene (BD) is oxidized by cytochrome P450 to reactive metabolites, including 1,2-epoxy-3-butene (BMO) and 1,2:3,4-diepoxybutane (BDE), which are thought to be responsible for BD genotoxicity and carcinogenicity. Alveolar-bronchiolar neoplasms were observed in mice but not rats following chronic exposure to BD. The site-specific carcinogenicity of BD in mice may result from metabolic activation in pulmonary tissue. We have incubated bronchioles isolated from both male B6C3F1 mice and male Sprague-Dawley rats with 34 microM BD (final concentration in the aqueous reaction medium) to assess species differences in pulmonary metabolism of BD and to enhance our understanding of species- and site-dependent BD carcinogenicity. Bronchioles from both mice and rats formed BMO, although mouse tissue produced 2-fold more than rat tissue. These preliminary results suggest that pulmonary activation of BD may play a role in the carcinogenicity of BD following inhalation exposure; however, other factors in addition to metabolic differences, probably contribute to the observed differences in susceptibility to BD toxicity.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D002070 Butadienes Four carbon unsaturated hydrocarbons containing two double bonds. Butadiene Derivative,Butadiene Derivatives,Derivative, Butadiene,Derivatives, Butadiene
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M J Seaton, and C G Plopper, and J A Bond
January 1983, Developments in toxicology and environmental science,
M J Seaton, and C G Plopper, and J A Bond
March 2007, Chemico-biological interactions,
M J Seaton, and C G Plopper, and J A Bond
June 2001, Chemico-biological interactions,
M J Seaton, and C G Plopper, and J A Bond
October 1996, Toxicology,
M J Seaton, and C G Plopper, and J A Bond
June 2001, Drug metabolism and disposition: the biological fate of chemicals,
M J Seaton, and C G Plopper, and J A Bond
February 1982, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!