Reflex effects of stimulation of sympathetic afferents on the triangularis sterni. 1995

R L Coon, and F A Hopp, and E J Zuperku
Department of Anesthesiology, Clement J. Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee 53295, USA.

The purpose of this study was to determine whether contralateral inhibition of the triangularis sterni is produced by stimulation of intrathoracic sympathetic afferents. Dogs were anesthetized with sodium pentobarbital and placed on positive pressure ventilation. The chest was opened through a mid-sternal incision. Diaphragm and left and right triangularis sterni EMGs were recorded, post-vagotomy, before and during electrical stimulation of the left ventral ansa subclavia (VA), vagosympathetic trunk, ventrolateral and ventromedial cardiac nerves and, when present, the stellate cardiac nerve. Peak of the phasic diaphragm EMG and expiratory time were not significantly affected by stimulation of the VA. A significant decrease in inspiratory time was observed. Ipsilateral excitation and contralateral inhibition of the left and right triangularis sterni EMGs, respectively, were produced by stimulation of the VA. Stimulation of the other intrathoracic nerves produced a similar pattern of results. Conduction velocity determinations suggested that the afferents which produced the reflex responses are, at least in part, small A fibers.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R L Coon, and F A Hopp, and E J Zuperku
February 1998, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
March 1987, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
January 1986, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
May 1989, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
September 1991, Respiration physiology,
R L Coon, and F A Hopp, and E J Zuperku
December 1989, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
December 1998, The Journal of physiology,
R L Coon, and F A Hopp, and E J Zuperku
October 1989, Journal of applied physiology (Bethesda, Md. : 1985),
R L Coon, and F A Hopp, and E J Zuperku
February 2003, Nihon Kokyuki Gakkai zasshi = the journal of the Japanese Respiratory Society,
R L Coon, and F A Hopp, and E J Zuperku
December 1988, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!