Localization of testosterone-sensitive and sexually dimorphic aromatase-immunoreactive cells in the quail preoptic area. 1996

J Balthazart, and O Tlemçani, and N Harada
Laboratory of Biochemistry, University of Liege, Belgium.

The distribution of aromatase-immunoreactive cells was studied in the medial preoptic nucleus of male and female quail that were sexually mature and gonadally intact, or gonadectomized, or gonadectomized and treated with testosterone. The study first confirmed the existence of a significant difference in the number of aromatase-immunoreactive cells between males and females (males > females) and the marked effect of castration and testosterone treatment which, respectively, decrease and restore the number of these cells. An analysis of the distribution in space of this neurochemically defined cell population was also carried out. This study revealed that castration does not uniformly decrease the density of aromatase-immunoreactive cells, but local increases are observed in an area directly adjacent to the third ventricle. A number of new sex differences in the organization of the medial preoptic nucleus and its population of aromatase cells have, in addition, been identified. The density of aromatase-immunoreactive cells is not higher in males than in females throughout the nucleus, but a higher density of immunoreactive cells is present in the ventromedial part of the nucleus in females as compared to males. In addition, the cross-sectional area of the nucleus as defined by the population of aromatase-immunoreactive cells is larger in males than in females in its rostral part and its shape is more elongated in the dorso-ventral direction in females than in males. Some of these differences (e.g. higher density of ARC-ir cells in the ventromedial part of the female POM, shape of the nucleus) appear to be organizational in nature, because they are still present in birds exposed to the same endocrine conditions during adult life (e.g. gonadectomized and treated with a same dose of testosterone). This conclusion should now be tested by experiments manipulating the endocrine environment of quail embryos. The anatomical heterogeneity of the medial preoptic nucleus revealed by this study also suggests a functional heterogeneity and the specific roles of the medial and lateral parts of the nucleus should also be investigated.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D002369 Castration Surgical removal or artificial destruction of gonads. Gonadectomy,Castrations,Gonadectomies
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001141 Aromatase An enzyme that catalyzes the desaturation (aromatization) of the ring A of C19 androgens and converts them to C18 estrogens. In this process, the 19-methyl is removed. This enzyme is membrane-bound, located in the endoplasmic reticulum of estrogen-producing cells of ovaries, placenta, testes, adipose, and brain tissues. Aromatase is encoded by the CYP19 gene, and functions in complex with NADPH-FERRIHEMOPROTEIN REDUCTASE in the cytochrome P-450 system. CYP19,Cytochrome P-450 CYP19,Cytochrome P-450(AROM),Androstenedione Aromatase,CYP 19,CYP19 Protein,Cytochrome P450 19,Estrogen Synthase,Estrogen Synthetase,P450AROM,Aromatase, Androstenedione,Cytochrome P 450 CYP19,Protein, CYP19
D012726 Sexual Behavior, Animal Sexual activities of animals. Mating Behavior, Animal,Sex Behavior, Animal,Animal Mating Behavior,Animal Mating Behaviors,Animal Sex Behavior,Animal Sex Behaviors,Animal Sexual Behavior,Animal Sexual Behaviors,Mating Behaviors, Animal,Sex Behaviors, Animal,Sexual Behaviors, Animal
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms

Related Publications

J Balthazart, and O Tlemçani, and N Harada
February 1986, Neuroscience letters,
J Balthazart, and O Tlemçani, and N Harada
May 1994, Neuroreport,
J Balthazart, and O Tlemçani, and N Harada
January 1993, Brain research bulletin,
J Balthazart, and O Tlemçani, and N Harada
December 1989, Archives internationales de physiologie et de biochimie,
J Balthazart, and O Tlemçani, and N Harada
April 1986, Brain research,
J Balthazart, and O Tlemçani, and N Harada
December 1992, Brain research. Developmental brain research,
J Balthazart, and O Tlemçani, and N Harada
March 1994, Physiology & behavior,
J Balthazart, and O Tlemçani, and N Harada
September 2007, Endocrinology,
Copied contents to your clipboard!