Heterogeneous axonal arborizations of rat thalamic reticular neurons in the ventrobasal nucleus. 1996

C L Cox, and J R Huguenard, and D A Prince
Department of Neurology, Stanford University Medical Center, CA 94305, USA.

The gamma-aminobutyric acid (GABA)-containing neurons of the thalamic reticular nucleus (nRt) are a major source of inhibitory innervation in dorsal thalamic nuclei. Individual nRt neurons were intracellularly recorded and labelled in an in vitro rat thalamic slice preparation to investigate their projection into ventrobasal thalamic nuclei (VB). Camera lucida reconstructions of 37 neurons indicated that nRt innervation ranges from a compact, focal projection to a widespread, diffuse projection encompassing large areas of VB. The main axons of 65% of the cells gave rise to intra-nRt collaterals prior to leaving the nucleus and, once within VB, ramified into one of three branching patterns: cluster, intermediate, and diffuse. The cluster arborization encompassed a focal region averaging approximately 25,000 mu m2 and contained a high density of axonal swellings, indicative of a topographic projection. The intermediate structure extended across an area approximately fourfold greater and also contained numerous axonal swellings. The diffuse arborization of nRt neurons covered a large region of VB and contained a relatively low density of axonal swellings. Analysis of somatic size and shape revealed that diffuse arborizations arose from significantly smaller, fusiform-shaped somata. Cytochrome oxidase reactivity or parvalbumin immunoreactivity was used to delineate a discontinuous staining pattern representing thalamic barreloids. The size of a cluster arborization closely approximated that of an individual barreloid. The heterogeneous arborizations from nRt neurons may reflect a dynamic range of inhibitory influences of nRt on dorsal thalamic activity.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013787 Thalamic Nuclei Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain. Nuclei, Thalamic
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

C L Cox, and J R Huguenard, and D A Prince
April 1987, The Journal of comparative neurology,
C L Cox, and J R Huguenard, and D A Prince
June 1989, Proceedings of the National Academy of Sciences of the United States of America,
C L Cox, and J R Huguenard, and D A Prince
January 1984, Journal of neuroscience research,
C L Cox, and J R Huguenard, and D A Prince
January 1983, Experimental brain research,
C L Cox, and J R Huguenard, and D A Prince
July 2007, The Journal of physiology,
C L Cox, and J R Huguenard, and D A Prince
January 2005, Morfologiia (Saint Petersburg, Russia),
C L Cox, and J R Huguenard, and D A Prince
November 1999, The Journal of comparative neurology,
C L Cox, and J R Huguenard, and D A Prince
January 1995, The European journal of neuroscience,
Copied contents to your clipboard!