Cytoplasmic sequestration of p53 in cytomegalovirus-infected human endothelial cells. 1996

A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
Department of Medicine, University of Minnesota, Minneapolis, USA.

Human umbilical vein endothelial cells were infected with human cytomegalovirus (HCMV) at a multiplicity of infection of 0.1 plaque-forming unit/cell and remained > 95% viable even after 10 days of infection. To induce apoptosis, control human umbilical vein endothelial cells and cells infected with HCMV for 3, 5, and 7 days were serum starved for 48 hours. Almost one-half of the uninfected cells lost viability after 48 hours of serum starvation whereas HCMV-infected cells were virtually unaffected (< 20% death, P < 0.05). Uninfected cells showed typical hallmarks of apoptosis, including unique morphological changes and DNA laddering. HCMV-infected cells, concomitant with their resistance to serum-starvation-induced death, displayed almost none of these characteristics. Active replication of HCMV was necessary for the anti-apoptotic effect, as cells treated with ultraviolet light-inactivated virus were not protected. p53, the G1/S phase cell cycle brake protein, was elevated in HCMV-infected cells. However, rather than accumulating in the nucleus, immunofluorescent and Western blot studies demonstrated remarkable and predominant cytoplasmic sequestration of p53 in HCMV-infected endothelial cells. Although HCMV proteins have already been shown to block apoptosis, we suggest that the aberrant subcellular pattern of p53 is the disturbed cellular mechanism that may be responsible for the anti-apototic properties of HCMV-infected cells. The selective resistance to apoptosis can be important during HCMV replication and may explain the oncogenic potential of HCMV as well as its pathogenic role in intimal-proliferation-mediated vascular diseases.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003586 Cytomegalovirus Infections Infection with CYTOMEGALOVIRUS, characterized by enlarged cells bearing intranuclear inclusions. Infection may be in almost any organ, but the salivary glands are the most common site in children, as are the lungs in adults. CMV Inclusion,CMV Inclusions,Congenital CMV Infection,Congenital Cytomegalovirus Infection,Cytomegalic Inclusion Disease,Cytomegalovirus Colitis,Cytomegalovirus Inclusion,Cytomegalovirus Inclusion Disease,Cytomegalovirus Inclusions,Inclusion Disease,Perinatal CMV Infection,Perinatal Cytomegalovirus Infection,Renal Tubular Cytomegalovirus Inclusion,Renal Tubular Cytomegalovirus Inclusions,Salivary Gland Virus Disease,Severe Cytomegalovirus Infection,Severe Cytomegalovirus Infections,Infections, Cytomegalovirus,CMV Infection, Congenital,CMV Infection, Perinatal,Colitis, Cytomegalovirus,Congenital CMV Infections,Congenital Cytomegalovirus Infections,Cytomegalic Inclusion Diseases,Cytomegalovirus Colitides,Cytomegalovirus Inclusion Diseases,Cytomegalovirus Infection,Cytomegalovirus Infection, Congenital,Cytomegalovirus Infection, Perinatal,Cytomegalovirus Infection, Severe,Cytomegalovirus Infections, Severe,Disease, Cytomegalic Inclusion,Disease, Cytomegalovirus Inclusion,Diseases, Cytomegalovirus Inclusion,Inclusion Disease, Cytomegalic,Inclusion Disease, Cytomegalovirus,Inclusion Diseases,Inclusion Diseases, Cytomegalovirus,Inclusion, CMV,Inclusion, Cytomegalovirus,Infection, Congenital CMV,Infection, Congenital Cytomegalovirus,Infection, Cytomegalovirus,Infection, Perinatal CMV,Infection, Perinatal Cytomegalovirus,Infection, Severe Cytomegalovirus,Perinatal CMV Infections,Perinatal Cytomegalovirus Infections
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014471 Umbilical Veins Venous vessels in the umbilical cord. They carry oxygenated, nutrient-rich blood from the mother to the FETUS via the PLACENTA. In humans, there is normally one umbilical vein. Umbilical Vein,Vein, Umbilical,Veins, Umbilical
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
June 2006, Journal of cell science,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
October 2007, The Journal of biological chemistry,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
December 2002, Journal of virology,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
November 1992, Transplantation,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
February 2008, Cardiovascular research,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
September 1992, Thrombosis and haemostasis,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
May 2003, Bulletin du cancer,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
December 2013, African health sciences,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
June 2000, FEBS letters,
A Kovacs, and M L Weber, and L J Burns, and H S Jacob, and G M Vercellotti
January 2011, Journal of virology,
Copied contents to your clipboard!