T cell antigen receptor signal transduction pathways. 1996

D A Cantrell
Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London.

The T cell antigen receptor regulates the activation and growth of T lymphocytes. The initial membrane proximal event triggered by the TCR is activation of protein tyrosine kinases with the resultant phosphorylation of cellular proteins. This biochemical response couples the TCR to a divergent array of signal transduction molecules, including enzymes that regulate lipid metabolism, GTP binding proteins, serine/threonine kinases and adapter molecules. The control of cytokine gene expression is one of the mechanisms that allows the TCR to control immune responses, and this chapter discusses the role of the different TCR signal transduction pathways in linking the TCR to nuclear targets-the transcription factors that control the expression of cytokine genes.

UI MeSH Term Description Entries
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

D A Cantrell
April 1997, Current opinion in cell biology,
D A Cantrell
June 1999, Current opinion in immunology,
D A Cantrell
January 1987, Journal of cellular physiology. Supplement,
D A Cantrell
September 1991, Seminars in immunology,
D A Cantrell
October 1992, Trends in biochemical sciences,
D A Cantrell
May 1997, Biochemical Society transactions,
D A Cantrell
September 1995, Annals of the New York Academy of Sciences,
D A Cantrell
February 1991, Transplantation proceedings,
D A Cantrell
August 1997, The Journal of laboratory and clinical medicine,
Copied contents to your clipboard!