Tyrosine kinase inhibitors enhance a Ca(2+)-activated K+ current (IAHP) and reduce IAHP suppression by a metabotropic glutamate receptor agonist in rat dentate granule neurones. 1996

M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
MRC Nerve Cell and Synapse Group, Faculty of Pharmacy, Toronto Hospital Research Institute, Ontario, Canada.

1. Activation of metabotropic glutamate receptors (mGluRs) inhibits a transient Ca(2+)-activated K+ current (IAHP) responsible for the slow after-hyperpolarization that follows depolarizations of dentate granule neurones in rat hippocampal brain slices. Here we show for the first time that this physiological consequence of mGluR stimulation is selectively attenuated by blockers of protein tyrosine kinases (PTKs). 2. Several distinct types of PTK blockers, including genistein, tyrphostin-B42 and lavendustin-A, reduced the inhibition of IAHP by the selective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD). Inhibition of IAHP by 5-HT was unaffected. The PTK blockers by themselves doubled the duration of IAHP suggesting that there exists a tonic inhibitory influence on IAHP that is reduced by PTK antagonists. 3. Inclusion of EGTA (1 mM) in the patch pipette also potentiated the IAHP and reduced the inhibitory action of ACPD on IAHP, consistent with the observation of others that chelation of intracellular Ca2+ prevents protein tyrosine phosphorylation induced by ACPD. 4. we propose that mGluR-initiated inositol 1,4,5-trisphosphate (InsP3) production mobilizes intracellular Ca2+ and leads to increased protein tyrosine phosphorylation which in turn leads to inhibition of IAHP.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme

Related Publications

M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
February 1995, The Journal of physiology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
December 1995, Journal of neurophysiology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
April 1998, Sheng li xue bao : [Acta physiologica Sinica],
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
October 1996, The European journal of neuroscience,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
February 2002, British journal of pharmacology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
July 1995, European journal of pharmacology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
September 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
November 1997, The Journal of physiology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
October 1994, Journal of neurophysiology,
M A Abdul-Ghani, and T A Valiante, and P L Carlen, and P S Pennefather
August 1991, The American journal of physiology,
Copied contents to your clipboard!