Properties of a novel K+ current that is active at resting potential in rabbit pulmonary artery smooth muscle cells. 1996

A M Evans, and O N Osipenko, and A M Gurney
Department of Physiology and Pharmacology, University of Strathclyde, Royal College, Glasgow, UK.

1. An outward current (IK(N)) was identified in rabbit pulmonary artery myocytes, which persisted after Ca(2+)-activated and ATP-sensitive K+ currents were blocked by TEA (10 mM) and glibenclamide (10 microM), respectively, and after A-like (IK(A)) and delayed rectifer (IK(V)) K+ currents were inactivated by clamping the cell at 0 mV for 10 min. It was found in smooth muscle cells at all levels of the pulmonary arterial tree. 2. The relationship between the reversal potential of IK(N) and the extracellular K+ concentration ([K+]o) was close to that expected for a K(+)-selective channel. Deviation from Nernstian behaviour at low [K+)o could be accounted for by the presence of an accompanying leakage current. 3. IK(N) is voltage gated. It has a low threshold for activation, between -80 and -65 mV, and activates slowly without delay. Activation follows an exponential time course with a time constant of 1.6 s at -60 mV. Deactivation is an order of magnitude faster than activation, with a time constant of 107 ms at -60 mV. 4. IK(N) showed a similar sensitivity to 4-aminopyridine as IK(A) and IK(V), with 49% inhibition at 10 mM. The current was not blocked by microM quinine, which did inhibit IK(A) and IK(V), by 51 and 47%, respectively. 5. Activation of IK(N) was detected at potentials close to the resting membrane potential of pulmonary artery smooth muscle cells, under physiological conditions. Thus it is likely to contribute to the resting membrane potential of these cells.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009129 Muscle Tonus The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed) Muscle Tension,Muscle Tightness,Muscular Tension,Tension, Muscle,Tension, Muscular,Tightness, Muscle,Tonus, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005905 Glyburide An antidiabetic sulfonylurea derivative with actions like those of chlorpropamide Glibenclamide,Daonil,Diabeta,Euglucon 5,Euglucon N,Glybenclamide,HB-419,HB-420,Maninil,Micronase,Neogluconin,HB 419,HB 420,HB419,HB420
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A M Evans, and O N Osipenko, and A M Gurney
April 2002, Clinical and experimental pharmacology & physiology,
A M Evans, and O N Osipenko, and A M Gurney
March 1992, The American journal of physiology,
A M Evans, and O N Osipenko, and A M Gurney
November 1993, Pflugers Archiv : European journal of physiology,
A M Evans, and O N Osipenko, and A M Gurney
March 1973, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
A M Evans, and O N Osipenko, and A M Gurney
September 1977, The Journal of physiology,
A M Evans, and O N Osipenko, and A M Gurney
April 1993, European journal of pharmacology,
A M Evans, and O N Osipenko, and A M Gurney
August 1991, The Journal of physiology,
A M Evans, and O N Osipenko, and A M Gurney
April 2001, The Journal of veterinary medical science,
A M Evans, and O N Osipenko, and A M Gurney
November 1995, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!