Ca2+ diffusion and sarcoplasmic reticulum transport both contribute to [Ca2+]i decline during Ca2+ sparks in rat ventricular myocytes. 1996

A M Gómez, and H Cheng, and W J Lederer, and D M Bers
Department of Physiology, University of Maryland, Baltimore 21201, USA.

1. We sought to evaluate the contribution of the sarcoplasmic reticulum (SR) Ca2+ pump (vs. diffusion) to the kinetics of [Ca24]i decline during Ca2+ sparks, which are due to spontaneous local SR Ca2+ release, in isolated rat ventricular myocytes measured using fluo-3 and laser scanning confocal microscopy. 2. Resting Ca2+ sparks were compared before (control) and after the SR Ca2(+)-ATPase was either completely blocked by 5 microM thapsigargin (TG) or stimulated by isoprenaline. Na(+)-Ca2+ exchange was blocked using Na(+)-free, Ca(2+)-free solution (0 Na+, O Ca2+) and conditions were arranged so that the SR Ca2+ content was the same under all conditions when Ca2+ sparks were measured. 3. The control Ca2+ spark amplitude (281 +/- 13 nM) was not changed by TG (270 +/- 21 nM) or isoprenaline (302 +/- 10 nM). However, the time constant of [Ca2+]i decline was significantly slower in the presence of TG (29.3 +/- 4.3 ms) compared with control (21.6 +/- 1.5 ms) and faster with isoprenaline (14.5 +/- 0.9 ms), but in all cases was much faster than the global [Ca2+]i decline during a control twitch (177 +/- 10 ms). 4. The spatial spread of Ca2+ during the Ca2+ spark was also influenced by the SR Ca2+ pump. The apparent 'space constant' of the Ca2+ sparks was longest when the SR Ca2+ pump was blocked, intermediate in control and shortest with isoprenaline. 5. We conclude that while Ca2+ diffusion from the source of Ca2+ release is the dominant process in local [Ca2+]i decline during the Ca2+ spark, Ca2+ transport by the SR contributes significantly to both the kinetics and spatial distribution of [Ca2+]i during the Ca2+ spark.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

A M Gómez, and H Cheng, and W J Lederer, and D M Bers
February 2000, Journal of bioenergetics and biomembranes,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
March 1999, Circulation research,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
March 1998, The Journal of physiology,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
December 1997, The Journal of physiology,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
December 1999, The Journal of physiology,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
November 1993, Circulation research,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
November 2011, Journal of molecular and cellular cardiology,
A M Gómez, and H Cheng, and W J Lederer, and D M Bers
June 1991, The Journal of physiology,
Copied contents to your clipboard!