CD43-specific activation of T cells induces association of CD43 to Fyn kinase. 1996

G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
Instituto de Biotecnología/Universidad Nacional Autónoma de Mexico, Apartado Postal 510-3 Cuernavaca, Morelos 62250, México.

CD43, the most abundant membrane protein of T lymphocytes, is able to initiate signal transduction pathways that lead to Ca2+ mobilization and interleukin-2 production, yet the molecular events involved in CD43's signal transduction pathway are poorly understood. In the present report we show that activation of both purified T lymphocytes and Jurkat cells, through CD43 cross-linking with the anti-CD43 L10 monoclonal antibody, induced CD43 association to Fyn kinase. This association is mediated by the Src homology 3 (SH3) domain of Fyn, since a glutathione S-transferase-Fyn SH3 fusion protein was able to precipitate CD43 from lysates of CD43-activated T cells. A synthetic peptide containing the SH3 binding sites of p85, located within the amino acid sequence 300ERQPAPALPPKPPKP314, was able to inhibit binding of CD43 to Fyn as well as to the glutathione S-transferase-Fyn SH3 fusion protein. We also provide evidence that upon CD43 cross-linking, Fyn is tyrosine-phosphorylated in a time-dependent manner. Our results suggest that CD43 cross-linking on the T cell surface induces the interaction between CD43 and Fyn, presumably through the Fyn SH3 domain and a putative SH3 binding site in CD43, leading to Fyn tyrosine phosphorylation and signal propagation.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
October 1996, The Journal of biological chemistry,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
September 2000, Proceedings of the National Academy of Sciences of the United States of America,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
June 1990, Proceedings of the National Academy of Sciences of the United States of America,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
October 2001, Biochemical and biophysical research communications,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
June 1996, Journal of neuroscience research,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
March 2006, Cellular immunology,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
November 1997, American journal of respiratory cell and molecular biology,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
June 2005, International immunology,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
December 1997, The Journal of experimental medicine,
G Pedraza-Alva, and L B Mérida, and S J Burakoff, and Y Rosenstein
November 2016, Immunology,
Copied contents to your clipboard!