Selective transcription factor induction in retinal pigment epithelial cells during photoreceptor phagocytosis. 1996

A V Ershov, and W J Lukiw, and N G Bazan
Neuroscience Center and Department of Ophthalmology, Louisiana State University Medical Center, New Orleans, Louisiana 70112, USA. nbazan@lsumc.edu

Expression of early response genes during rod outer segment phagocytosis by normal Long Evans and Royal College of Surgeons-rdy+p+ rats and by dystrophic Royal College of Surgeons-p+ rat retinal pigment epithelial cells was studied in primary cell culture. Northern analysis revealed that the abundance of zif-268 (egr-1), c-fos, and tis-1 (NGF1-B) mRNA was rapidly and transiently increased in normal retinal pigment epithelial cells during rod outer segment phagocytosis but not during phagocytosis of latex particles. No increase in gene expression was found in Royal College of Surgeons-p+ dystrophic retinal pigment epithelial cells challenged with rod outer segments. As shown by electrophoretic mobility shift assay, a prominent short term increase in the intensity of the gel-shifted band was detected using nuclear protein extracts derived from rod outer segment-challenged, control retinal pigment epithelial cells and zif-268, AP-1, AP-2, or tis-1 consensus oligonucleotides. No such increase was detected when using nuclear factor kappaB consensus oligonucleotide or when the early response gene prostaglandin H synthase-2 mRNA was measured over the time course studied. The results suggest that in retinal pigment epithelial cells, rod outer segment-specific phagocytosis is accompanied by the selective expression of early response genes coding for transcription factors. The specific pattern of the induction of these transcription factors is predicted to modulate the expression of gene cascades.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

A V Ershov, and W J Lukiw, and N G Bazan
May 2000, Journal of neuroscience research,
A V Ershov, and W J Lukiw, and N G Bazan
May 2002, The Journal of biological chemistry,
A V Ershov, and W J Lukiw, and N G Bazan
January 1983, Nippon Ganka Gakkai zasshi,
A V Ershov, and W J Lukiw, and N G Bazan
August 2016, Cell biology and toxicology,
A V Ershov, and W J Lukiw, and N G Bazan
July 2017, Journal of agricultural and food chemistry,
A V Ershov, and W J Lukiw, and N G Bazan
November 1978, Investigative ophthalmology & visual science,
A V Ershov, and W J Lukiw, and N G Bazan
December 2017, Journal of neuroscience research,
A V Ershov, and W J Lukiw, and N G Bazan
August 2012, Investigative ophthalmology & visual science,
Copied contents to your clipboard!