Localization, expression, and characterization of guanylin in the rat adrenal medulla. 1996

M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
Institute of Anatomy, University of Zürich-Irchel, Switzerland.

The peptide guanylin, recently isolated from the intestine, and localized to cells of the gut mucosa, is involved in electrolyte/water transport in the intestinal epithelium by means of a paracrine mode of regulation. Since high amounts of this peptide are present also in the systemic circulation, we investigated the adrenal gland as a potential endocrine source of guanylin. Using a reverse transcriptase-polymerase chain reaction and hybridization with an internal oligonucleotide designed for rat guanylin, 514-bp signals were obtained in intestinal tissue and adrenal gland. Successive analyses of extracts from intestine and adrenal gland by HPLC, western blotting, and radioimmunoassay revealed the presence of the same high-molecular mass (about 12.4 kDa) guanylin that corresponds to the mass of the guanylin prohormone. About 60 fmol/ml of circulating immunoreactive guanylin was determined in plasma. Localization studies with antisera directed against different epitopes of guanylin revealed that, in the adrenal gland, guanylin immunoreactivity is restricted to the medulla, where it is mainly confined to norepinephrine chromogranin A-containing cells. On the ultrastructural level, guanylin immunoreactivity was exclusively located to secretory granules of chromaffin cells. The present data indicate that, in addition to entero-endocrine cells, the adrenal medulla represents a further source of guanylin. Thus, an endocrine mode of function of guanylin may accrue to its hitherto evidenced paracrine action in fluid transport in the intestinal epithelium. Furthermore guanylin may be considered as a neurohormonal peptide.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010452 Peptide Biosynthesis The production of PEPTIDES or PROTEINS by the constituents of a living organism. The biosynthesis of proteins on RIBOSOMES following an RNA template is termed translation (TRANSLATION, GENETIC). There are other, non-ribosomal peptide biosynthesis (PEPTIDE BIOSYNTHESIS, NUCLEIC ACID-INDEPENDENT) mechanisms carried out by PEPTIDE SYNTHASES and PEPTIDYLTRANSFERASES. Further modifications of peptide chains yield functional peptide and protein molecules. Biosynthesis, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002864 Chromogranins A group of acidic proteins that are major components of SECRETORY GRANULES in the endocrine and neuroendocrine cells. They play important roles in the aggregation, packaging, sorting, and processing of secretory protein prior to secretion. They are cleaved to release biologically active peptides. There are various types of granins, usually classified by their sources. Chromogranin,Granin,Secretogranin,Secretogranins,Granins
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D005768 Gastrointestinal Hormones HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs. Enteric Hormone,Enteric Hormones,Gastrointestinal Hormone,Intestinal Hormone,Intestinal Hormones,Hormone, Enteric,Hormone, Gastrointestinal,Hormone, Intestinal,Hormones, Enteric,Hormones, Gastrointestinal,Hormones, Intestinal

Related Publications

M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
August 1996, European journal of pharmacology,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
January 1987, Histochemistry,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
September 1992, Neurochemistry international,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
January 1986, Journal of lipid research,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
January 1999, In vitro cellular & developmental biology. Animal,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
April 1980, The American journal of anatomy,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
September 1986, Brain research,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
July 1988, Endocrinology,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
January 1989, Toxicologic pathology,
M Reinecke, and I David, and D Loffing-Cueni, and P Ablinger, and Y Cetin, and M Kuhn, and W G Forssmann
January 2008, Histology and histopathology,
Copied contents to your clipboard!