Hepatotoxicity induced by iron overload and alcohol. Studies on the role of chelatable iron, cytochrome P450 2E1 and lipid peroxidation. 1996

P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
Department of Gastroenterology and Hepatology, Karolinska Institutet, Haddinge University Hospital, Sweden.

OBJECTIVE Clinical experience and studies with experimental animal models indicate a synergistic hepatotoxic effect of dietary iron overload and chronic alcohol ingestion. In order to elucidate the mechanism underlying this synergism, we examined the hepatic levels of ethanol-inducible cytochrome P450 2E1, glutathione and malondialdehyde, and the effect of iron chelation with desferrioxamine, in livers from rats treated with iron and/or ethanol. METHODS Animals received diets with or without 2.5-3% carbonyl iron for 6-9 weeks, followed by an ethanol-containing diet or a liquid control diet for 5-9 weeks. Desferrioxamine was administered subcutaneously with mini-osmotic pumps. Alanine aminotransferase activity in serum and hepatic contents of glutathione and malondialdehyde were determined. The hepatic level of cytochrome P450 2E1 was determined with Western Blotting using a specific polyclonal antibody. RESULTS The combination of iron and alcohol led to a marked increase in serum alanine aminotransferase activity as compared with all other treatment groups, and iron chelation with desferrioxamine reversed these increases. Treatment with alcohol alone led to slightly increased aminotransferases compared with controls. The level of cytochrome P450 2E1 was significantly elevated in microsomes isolated from ethanol-treated rats, but neither additional iron supplementation nor desferrioxamine influenced this level significantly. Glutathione contents were increased in the livers of animals treated with iron and/or ethanol. Malondialdehyde values were increased in iron-treated animals, whereas neither ethanol nor desferrioxamine altered malondialdehyde levels significantly. CONCLUSIONS The toxic effects exerted by the combination of iron overload and chronic ethanol feeding on rat liver are dependent on a pool of chelatable iron. The hepatic level of cytochrome P450 2E1 is markedly induced by ethanol but not further altered by iron overload. Neither increased lipid peroxidation nor depletion of hepatic glutathione levels can explain the synergistic hepatotoxic effects of iron and ethanol in this model.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D003676 Deferoxamine Natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. Desferrioxamine,Deferoxamine B,Deferoxamine Mesilate,Deferoxamine Mesylate,Deferoxamine Methanesulfonate,Deferoximine,Deferrioxamine B,Desferal,Desferioximine,Desferrioxamine B,Desferrioxamine B Mesylate,Desferroxamine,Mesilate, Deferoxamine,Mesylate, Deferoxamine,Mesylate, Desferrioxamine B,Methanesulfonate, Deferoxamine
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000410 Alanine Transaminase An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2. Alanine Aminotransferase,Glutamic-Pyruvic Transaminase,SGPT,Alanine-2-Oxoglutarate Aminotransferase,Glutamic-Alanine Transaminase,Alanine 2 Oxoglutarate Aminotransferase,Aminotransferase, Alanine,Aminotransferase, Alanine-2-Oxoglutarate,Glutamic Alanine Transaminase,Glutamic Pyruvic Transaminase,Transaminase, Alanine,Transaminase, Glutamic-Alanine,Transaminase, Glutamic-Pyruvic
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
November 2001, Pathologie-biologie,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
February 2006, Toxicological sciences : an official journal of the Society of Toxicology,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
January 1990, Free radical biology & medicine,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
May 1996, Biological trace element research,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
October 2002, Life sciences,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
June 1995, Hepatology (Baltimore, Md.),
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
November 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
October 1992, Hepatology (Baltimore, Md.),
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
April 2020, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society,
P Stål, and I Johansson, and M Ingelman-Sundberg, and K Hagen, and R Hultcrantz
February 2002, Toxicology in vitro : an international journal published in association with BIBRA,
Copied contents to your clipboard!