Muscarinic transmission decreases the number of SIF cells demonstrating catecholamine histofluorescence in rat superior cervical ganglia. 1996

T J Heppener, and J Heistein, and J F Fiekers
Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, USA.

Preganglionic electrical stimulation of the cervical sympathetic trunk to the rat superior cervical ganglia produced a mean reduction in the number of visible small intensely fluorescent (SIF) cells demonstrating catecholamine histofluorescence to 32% of the unstimulated contralateral control. The reduction in the number of catecholamine-positive SIF cells required the presence of specific blockers of catecholamine uptake and synthesis and was dependent on normal synaptic transmission. No change in the number of catecholamine-positive SIF cells was observed when ganglionic transmission occurred in solutions containing both hexamethonium and atropine or with atropine alone (97% of the unstimulated control). Furthermore, preganglionic stimulation in the presence of high magnesium/low calcium solutions, which effectively blocked synaptic transmission, prevented the stimulation-induced decrease in the number of catecholamine-positive SIF cells. Prolonged antidromic stimulation of the internal carotid nerve only reduced the number of catecholamine-positive SIF cells to 75% of the unstimulated contralateral control. These results suggest that preganglionic synaptic impulses can induce the release of catecholamines from SIF cells via muscarinic receptor activation. Furthermore, the necessity for pharmacological intervention of uptake and synthesis blockers of catecholamines in order to detect the synaptically-induced reduction in the number of catecholamine-positive SIF cells, suggests that synaptic transmission also modulates the synthesis of catecholamines in SIF cells within the rat superior cervical ganglia.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

T J Heppener, and J Heistein, and J F Fiekers
October 1982, Experimental neurology,
T J Heppener, and J Heistein, and J F Fiekers
February 1978, The Journal of pharmacology and experimental therapeutics,
T J Heppener, and J Heistein, and J F Fiekers
February 1979, European journal of pharmacology,
T J Heppener, and J Heistein, and J F Fiekers
May 1975, The Journal of pharmacology and experimental therapeutics,
T J Heppener, and J Heistein, and J F Fiekers
March 1976, Journal of neurochemistry,
T J Heppener, and J Heistein, and J F Fiekers
July 2003, Acta pharmacologica Sinica,
T J Heppener, and J Heistein, and J F Fiekers
January 1980, Advances in biochemical psychopharmacology,
T J Heppener, and J Heistein, and J F Fiekers
January 1978, Annual review of pharmacology and toxicology,
Copied contents to your clipboard!