Quantification of aggrecan and link-protein mRNA in human articular cartilage of different ages by competitive reverse transcriptase-PCR. 1996

M C Bolton, and J Dudhia, and M T Bayliss
Biochemistry Division, Kennedy Institute of Rheumatology, Hammersmith, London, U.K.

A competitive reverse transcriptase-PCR (RT-PCR) assay has been developed for the quantification of particular mRNA species in human articular cartilage. Competitor RNA species were synthesized that differed from the amplified target sequence only by the central insertion of an EcoRI restriction site. By using known amounts of synthetic target and competitor RNA, it was shown that competitor RNA molecules designed in this way are reverse-transcribed and amplified with equal efficiency to the target of interest. Furthermore quantification could be performed during the plateau phase of the PCR, which was necessary when using ethidium bromide fluorescence as a detection system. The inhibition of aggrecan and link-protein mRNA expression by interleukin 1 or tumour necrosis factor in monolayers of human articular chondrocytes quantified by this competitive RT-PCR method compared favourably with Northern hybridization studies. The main advantage of this technique is that it can be used to quantify levels of mRNA with RNA extracted directly from 100 mg wet weight of human articular cartilage. Age-related changes in aggrecan and link-protein mRNA were therefore quantified in human articular cartilage directly after dissection from the joint. The concentration of link-protein mRNA was higher in immature cartilage than in mature cartilage when expressed relative to the amount of glyceraldehyde-3-phosphate dehydrogenase mRNA, but no age-related changes were observed in aggrecan mRNA expression. The ratio of aggrecan to link-protein mRNA was higher in mature cartilage than in immature tissue. These age-related differences in the molecular stoichiometry of aggrecan and link-protein mRNA might have implications with respect to the regulation of the formation and the stability of the proteoglycan aggregates in cartilage.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

M C Bolton, and J Dudhia, and M T Bayliss
March 1998, DNA and cell biology,
M C Bolton, and J Dudhia, and M T Bayliss
December 1992, The Biochemical journal,
M C Bolton, and J Dudhia, and M T Bayliss
November 2003, Clinical and diagnostic laboratory immunology,
M C Bolton, and J Dudhia, and M T Bayliss
April 1997, Molecular human reproduction,
M C Bolton, and J Dudhia, and M T Bayliss
January 2002, Clinical and diagnostic laboratory immunology,
M C Bolton, and J Dudhia, and M T Bayliss
April 2001, Experimental & molecular medicine,
M C Bolton, and J Dudhia, and M T Bayliss
March 2004, Parasitology international,
M C Bolton, and J Dudhia, and M T Bayliss
February 1998, Molecular and cellular probes,
Copied contents to your clipboard!