Microfilament assembly and cortical granule distribution during maturation, parthenogenetic activation and fertilisation in the porcine oocyte. 1996

N H Kim, and B N Day, and H T Lee, and K S Chung
Animal Resources Research Center, Kon-Kuk University, Seoul, Korea.

In this study we imaged integral changes in microfilament assembly and cortical granule distribution, and examined effects of microfilament inhibitor on the cortical granule distribution during oocyte maturation, parthenogenetic activation and in vitro fertilisation in the pig. The microfilament assembly and cortical granule distribution were imaged with fluorescent-labelled lectin and rhodamine-labelled phalloidin under laser scanning confocal microscopy. At the germinal vesicle stage, cortical granule organelles were located around the cell cortex and were present as a relatively wide area on the oolemma. Microfilaments were also observed in a wide uniform area around the cell cortex. Following germinal vesicle breakdown, microfilaments concentrated in the condensed chromatin and cortical granules were observed in the cortex. Treatment with cytochalasin B inhibited microfilament polymerisation and prevented movement of cortical granules to the cortex. Cortical granule exudation following sperm penetration was evenly distributed in the entire perivitelline space. These results suggest that the microfilament assembly is involved in the distribution, movement and exocytosis of cortical granules during maturation and fertilisation.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008841 Actin Cytoskeleton Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments. Actin Filaments,Microfilaments,Actin Microfilaments,Actin Cytoskeletons,Actin Filament,Actin Microfilament,Cytoskeleton, Actin,Cytoskeletons, Actin,Filament, Actin,Filaments, Actin,Microfilament,Microfilament, Actin,Microfilaments, Actin
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010312 Parthenogenesis A unisexual reproduction without the fusion of a male and a female gamete (FERTILIZATION). In parthenogenesis, an individual is formed from an unfertilized OVUM that did not complete MEIOSIS. Parthenogenesis occurs in nature and can be artificially induced. Arrhenotoky,Automixis,Thelytoky,Parthenogeneses
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D005260 Female Females

Related Publications

N H Kim, and B N Day, and H T Lee, and K S Chung
September 2002, Development (Cambridge, England),
N H Kim, and B N Day, and H T Lee, and K S Chung
November 1988, Developmental biology,
N H Kim, and B N Day, and H T Lee, and K S Chung
August 2004, Biology of reproduction,
N H Kim, and B N Day, and H T Lee, and K S Chung
December 2002, Molecular reproduction and development,
N H Kim, and B N Day, and H T Lee, and K S Chung
October 2005, The Journal of reproduction and development,
Copied contents to your clipboard!