Enhanced intramacrophage activity of resorcinomycin A against Mycobacterium avium-Mycobacterium intracellulare complex after liposome encapsulation. 1996

R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
Department of Bioimmunotherapy, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA.

The activities of free and liposomal resorcinomycin A against Mycobacterium avium-Mycobacterium intracellulare complex (MAC) grown in broth and in murine peritoneal macrophages were evaluated. Liposomal resorcinomycin A was composed of dimyristoyl phosphatidylcholine and phosphatidylinositol at a molar ratio of 9:1. Both free resorcinomycin A and liposomal resorcinomycin A showed no toxicity to macrophages at concentrations up to 50 micrograms/ml, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Minimal inhibitory concentrations of free resorcinomycin A and liposomal resorcinomycin A in broth were 6 and 12 micrograms/ml, respectively, as determined by the MTT colorimetric microassay. In macrophages, liposomal resorcinomycin A caused significantly higher intramacrophage antimycobacterial activity than the free form of the drug. At doses ranging from 6 to 50 micrograms/ml, liposomal resorcinomycin A caused 50 to 93% MAC growth inhibition, respectively (as determined by CFU), while free resorcinomycin A was associated with 33 to 62% MAC growth inhibition, respectively, 3 days after drug treatment. In addition, antimycobacterial activity of liposomal resorcinomycin A in macrophages was maintained 7 days after treatment, whereas the activity of free resorcinomycin A was reduced to negligible 3 days after treatment. In summary, liposome encapsulation of resorcinomycin A resulted in significant enhancement of antibacterial activity against intramacrophagic MAC infection.

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D004339 Drug Compounding The preparation, mixing, and assembly of a drug. (From Remington, The Science and Practice of Pharmacy, 19th ed, p1814). Drug Formulation,Drug Preparation,Drug Microencapsulation,Pharmaceutical Formulation,Compounding, Drug,Formulation, Drug,Formulation, Pharmaceutical,Microencapsulation, Drug,Preparation, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D015269 Mycobacterium avium Complex A complex that includes several strains of M. avium. M. intracellulare is not easily distinguished from M. avium and therefore is included in the complex. These organisms are most frequently found in pulmonary secretions from persons with a tuberculous-like mycobacteriosis. Strains of this complex have also been associated with childhood lymphadenitis and AIDS; M. avium alone causes tuberculosis in a variety of birds and other animals, including pigs. Battey Bacillus,MAIC,Mycobacterium avium-intracellulare,Mycobacterium avium-intracellulare Complex,Mycobacterium intracellulare,Nocardia intracellularis

Related Publications

R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
January 1988, Annales de l'Institut Pasteur. Microbiology,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
September 1988, Antimicrobial agents and chemotherapy,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
September 1993, Antimicrobial agents and chemotherapy,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
March 1994, Antimicrobial agents and chemotherapy,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
May 1987, Diagnostic microbiology and infectious disease,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
April 2010, The American journal of medicine,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
July 1991, European journal of epidemiology,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
November 1992, Biochimica et biophysica acta,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
July 1988, The Indian journal of medical research,
R Gomez-Flores, and R Hsia, and R Tamez-Guerra, and R T Mehta
October 1976, Japanese journal of microbiology,
Copied contents to your clipboard!