Subunit interactions in the mariner transposase. 1996

A R Lohe, and D T Sullivan, and D L Hartl
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

We have studied the Mos1 transposase encoded by the transposable element mariner. This-transposase is a member of the "D,D(35)E" superfamily of proteins exhibiting the motif D,D(34)D. It is not known whether this transposase, or other eukaryote transposases manifesting the D,D(35)E domain, functions in a multimeric form. Evidence for oligomerization was found in the negative complementation of Mos1 by an EMS-induced transposase mutation in the catalytic domain. The transposase produced by this mutation has a glycine-to-arginine replacement at position 292. The G292R mutation strongly interferes with the ability of wild-type transposase to catalyze excision of a target element. Negative complementation was also observed for two other EMS mutations, although the effect was weaker than observed with G292R. Results from the yeast two-hybrid system also imply that Mos1 subunits interact, suggesting the possibility of subunit oligomerization in the transposition reaction. Overproduction of Mos1 subunits through an hsp70 promoter also inhibits excision of the target element, possibly through autoregulatory feedback on transcription or through formation of inactive or less active oligomers. The effects of both negative complementation and overproduction may contribute to the regulation of mariner transposition.

UI MeSH Term Description Entries
D008297 Male Males
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

A R Lohe, and D T Sullivan, and D L Hartl
September 2001, Nucleic acids research,
A R Lohe, and D T Sullivan, and D L Hartl
April 2009, Mini reviews in medicinal chemistry,
A R Lohe, and D T Sullivan, and D L Hartl
September 1999, Proceedings of the National Academy of Sciences of the United States of America,
A R Lohe, and D T Sullivan, and D L Hartl
December 2009, Genetica,
A R Lohe, and D T Sullivan, and D L Hartl
August 2005, Journal of molecular biology,
A R Lohe, and D T Sullivan, and D L Hartl
March 2001, Molecular genetics and genomics : MGG,
A R Lohe, and D T Sullivan, and D L Hartl
May 2010, Genetica,
A R Lohe, and D T Sullivan, and D L Hartl
January 1995, The Journal of heredity,
A R Lohe, and D T Sullivan, and D L Hartl
May 2014, Nucleic acids research,
A R Lohe, and D T Sullivan, and D L Hartl
October 1996, The EMBO journal,
Copied contents to your clipboard!