Central distribution and peripheral functional properties of afferent and efferent components of the superior laryngeal nerve: morphological and electrophysiological studies in the rat. 1996

K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
Oral and Maxillofacial Surgery Department II, Matsumoto Dental College, Nagano, Japan.

The central distribution of the afferent and efferent components of the superior laryngeal nerve (SLN), which in the rat is ramified into the three branches of the rostral branch (R.Br), middle branch (M.Br), and caudal branch (C.Br), was examined after application of horseradish peroxidase conjugated with wheat germ agglutinin (HRP-WGA) to the proximal cut end of each branch. In addition, the afferent and efferent neural activities of each branch were recorded to investigate the functional properties. The present study provided several new findings as to the distribution of each branch and the functional properties of the SLN. The following conclusions were drawn: 1) the R.Br, containing only afferent fibers projecting to the ipsilateral lateral region of the nucleus of the solitary tract (NST), extends between slightly below the obex and the region approximately 0.6 mm rostral from the obex, and it corresponds to the interstitial subnucleus of the NST; 2) the M.Br, innervating the cricothyroid muscle, contains only efferent fibers originating ipsilaterally from the motoneurons localized within the ambiguus nucleus (Amb) and in the area ventrolateral to the Amb; and 3) the C.Br, which innervates the inferior pharyngeal constrictor muscle, contains both efferent and afferent fibers. HRP-WGA-labeled cells are distributed within both the Amb and the dorsal motor nucleus of the vagus nerve, ipsilateral to the injection site. Afferent proprioceptive fibers project to the ipsilateral interstitial subnucleus of the NST. The present results provide evidence that each branch of the SLN has distinctive functional properties and contributes to the laryngeal functions.

UI MeSH Term Description Entries
D007823 Laryngeal Nerves Branches of the VAGUS NERVE. The superior laryngeal nerves originate near the nodose ganglion and separate into external branches, which supply motor fibers to the cricothyroid muscles, and internal branches, which carry sensory fibers. The RECURRENT LARYNGEAL NERVE originates more caudally and carries efferents to all muscles of the larynx except the cricothyroid. The laryngeal nerves and their various branches also carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions. Laryngeal Nerve, Superior,Laryngeal Nerve,Laryngeal Nerves, Superior,Nerve, Laryngeal,Nerve, Superior Laryngeal,Nerves, Laryngeal,Nerves, Superior Laryngeal,Superior Laryngeal Nerve,Superior Laryngeal Nerves
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017552 Solitary Nucleus GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein. Nucleus Solitarius,Nuclei Tractus Solitarii,Nucleus Tractus Solitarii,Nucleus of Solitary Tract,Nucleus of Tractus Solitarius,Nucleus of the Solitary Tract,Solitary Nuclear Complex,Solitary Tract Nucleus,Complex, Solitary Nuclear,Complices, Solitary Nuclear,Nuclear Complex, Solitary,Nuclear Complices, Solitary,Nuclei Tractus Solitarius,Nucleus Tractus Solitarius,Nucleus, Solitary,Nucleus, Solitary Tract,Solitarii, Nuclei Tractus,Solitarius Nucleus, Tractus,Solitarius, Nuclei Tractus,Solitary Nuclear Complices,Tractus Solitarii, Nuclei,Tractus Solitarius Nucleus,Tractus Solitarius, Nuclei
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 1987, Anatomy and embryology,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 1984, The Journal of comparative neurology,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
February 1985, The Journal of comparative neurology,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
March 1982, Brain research,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 1982, Brain research bulletin,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 2006, Acta otorrinolaringologica espanola,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 1983, Anatomy and embryology,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
September 1990, Brain research bulletin,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
August 1983, Neuroscience letters,
K Furusawa, and K Yasuda, and D Okuda, and M Tanaka, and M Yamaoka
January 1990, Acta Belgica. Medica physica : organe officiel de la Societe royale belge de medecine physique et de rehabilitation,
Copied contents to your clipboard!