Glut1 glucose transporter activity in human brain injury. 1996

E M Cornford, and S Hyman, and M E Cornford, and M J Caron
Department of Neurology, UCLA School of Medicine 90095, USA.

The principal glucose transporter at the blood-brain barrier (BBB) is the Glut1 isoform, and transporter density is believed to be an index of cerebral metabolic rate. In the present study, glucose transporter expression was studied in tissue resected 7-8 h after acute traumatic brain injuries in 2 patients. Light microscopic immunochemistry indicated a zone of complete loss of the Glut1 glucose transporter isoform in microvessel endothelial cells adjacent to sites of small vessel injury, concentrically surrounded by a narrow zone of variable Glut1, and distally surrounded by capillaries with typically immunoreactive endothelia in nondisrupted parenchyma. Variably reactive capillaries displayed alternating sectors of greatly reduced and highly reactive Glut1 density, suggesting a high density and low density of transporter activity in contiguous endothelial cells. Quantitative electron microscopic immunogold analyses demonstrated that the transporter was predominantly localized to the luminal and abluminal endothelial membranes, with lesser reactivity in cytoplasm; pericyte Glut1 was minimally above background levels. In endothelial sectors with reduced Glut1 transporter immunoreactivity, the luminal:abluminal ratio of Glut1 epitòpes was less than unity; while it is greater than unity in highly reactive endothelial cells. The number of Glut1-immunoreactive sites per micrometer of capillary membrane was not significantly different from previous reported Glut1 density in seizure resections, and about 2- to 3-fold higher than in human red cells. In the same tissue samples, qualitative immunogold electron microscopy of human serum albumin indicated leakage of this protein (MW 65,000) from the vascular space into pericapillary regions. Thus the high Glut1 density observed in capillaries from acutely injured brain occurs concomitantly with compromised barrier function.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein

Related Publications

E M Cornford, and S Hyman, and M E Cornford, and M J Caron
July 1997, Journal of submicroscopic cytology and pathology,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
May 1995, Glia,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
August 1998, Archives of biochemistry and biophysics,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
November 1998, Neuroscience letters,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
June 2014, Nature,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
February 1999, The Journal of clinical endocrinology and metabolism,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
January 2015, PloS one,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
March 1996, Cancer research,
E M Cornford, and S Hyman, and M E Cornford, and M J Caron
September 2000, Brain research. Developmental brain research,
Copied contents to your clipboard!