Novel N omega-xanthenyl-protecting groups for asparagine and glutamine, and applications to N alpha-9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase peptide synthesis. 1996

Y Han, and N A Solé, and J Tejbrant, and G Barany
University of Minnesota, Minneapolis, USA.

The N alpha-9-fluorenylmethyloxycarbonyl (Fmoc), N omega-9H-xanthen-9-yl (Xan), N omega-2-methoxy-9H-xanthen-9-yl (2-Moxan) or N omega-3-methoxy-9H-xanthen-9-yl (3-Moxan) derivatives of asparagine and glutamine were prepared conveniently by acid-catalyzed reactions of appropriate xanthydrols with Fmoc-Asn-OH and Fmoc-Gln-OH. The Xan and 2-Moxan protected derivatives have been used in Fmoc solid-phase syntheses of several challenging peptides: a modified Riniker's peptide to probe tryptophanalkylation side reactions, Briand's peptide to assess deblocking, at the N-terminus and Marshall's ACP (65-74) to test difficult couplings. Removal of the Asn and Gln side-chain protection occurred concomitantly with release of peptide from the support, under the conditions for acidolytic cleavage of the tris(alkoxy)benzylamide (PAL) anchoring linkage by use of trifluoroacetic acid/scavenger mixtures. For each of the model peptides, the products obtained by the new protection schemes were purer than those obtained with N omega-2,4,6-trimethoxybenzyl (Tmob) or N omega-triphenylmethyl (Trt) protection for Asn and Gln.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005449 Fluorenes A family of diphenylenemethane derivatives.
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D014966 Xanthenes Compounds with three aromatic rings in linear arrangement with an OXYGEN in the center ring. Xanthene

Related Publications

Y Han, and N A Solé, and J Tejbrant, and G Barany
October 1989, International journal of peptide and protein research,
Y Han, and N A Solé, and J Tejbrant, and G Barany
March 1996, International journal of peptide and protein research,
Y Han, and N A Solé, and J Tejbrant, and G Barany
January 1982, International journal of peptide and protein research,
Y Han, and N A Solé, and J Tejbrant, and G Barany
January 2014, Journal of peptide science : an official publication of the European Peptide Society,
Y Han, and N A Solé, and J Tejbrant, and G Barany
January 2000, Biopolymers,
Y Han, and N A Solé, and J Tejbrant, and G Barany
January 2015, Methods in molecular biology (Clifton, N.J.),
Y Han, and N A Solé, and J Tejbrant, and G Barany
November 2007, Chemical biology & drug design,
Copied contents to your clipboard!