Fluorescent probes of membrane surface properties. 1996

R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
Department of Biochemistry, McMaster University, Hamilton, Ont, Canada. epand@fhs.csu.mcmaster.ca

We have studied the properties of two new fluorescent probes, 7-dimethylaminocoumarin derivatives, 4-[N, N-dimethyl-N-(n-tetradecyl)ammoniummethyl]-7-(N,N-dimethylamino)co umarin chloride (TAMAC) and 4-(n-dodecylthiomethyl)-7-(N,N-dimethylamino)coumarin (DTMAC) in model membrane systems. Both probes are sensitive to solvent polarity. The TAMAC probe has a quaternary ammonium function to position it at a fixed location with respect to the membrane interface. In membranes of dipalmitoleoylphosphatidylethanolamine (DiPoPE), both probes detect marked increases in surface hydrophobicity as the bilayer to hexagonal phase transition temperature is approached. This does not occur when the probes are embedded in dipalmitoleoylphosphatidylcholine (DiPoPC) in which case the fluorescence emission is found to be largely independent of temperature. A nitroxide quencher covalently linked to the 5 position of the sn-2 acyl chain of phosphatidylcholine quenches the fluorescence of DTMAC in DiPoPC more than in DiPoPE, indicating the deeper insertion of this probe in DiPoPC. As the temperature is increased the DTMAC fluorophore moves even further out of the membrane. These findings indicate that DTMAC, which does not contain a group to fix its location along the bilayer normal, adjusts its position to small changes in environment polarity, so as to maintain an environment of a fixed dielectric constant. However, with greater changes in membrane interfacial polarity the environment of the probe will be altered. Thus, in addition to the sensitivity of these probes to solvent polarity, the ability of a fixed nitroxide to quench DTMAC becomes another parameter with which to characterize membrane properties with these probes.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D010718 Phosphatidylserines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a SERINE moiety. Serine Phosphoglycerides,Phosphatidyl Serine,Phosphatidyl Serines,Phosphatidylserine,Phosphoglycerides, Serine,Serine, Phosphatidyl,Serines, Phosphatidyl
D003374 Coumarins Synthetic or naturally occurring substances related to coumarin, the delta-lactone of coumarinic acid. 1,2-Benzopyrone Derivatives,1,2-Benzopyrones,Coumarin Derivative,Coumarine,1,2-Benzo-Pyrones,Benzopyran-2-ones,Coumarin Derivatives,Coumarines,1,2 Benzo Pyrones,1,2 Benzopyrone Derivatives,1,2 Benzopyrones,Benzopyran 2 ones,Derivative, Coumarin,Derivatives, 1,2-Benzopyrone,Derivatives, Coumarin
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
September 1993, Journal of fluorescence,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
January 1988, Biochemistry,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
January 1972, Biomembranes,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
June 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
December 1984, Journal of biochemical and biophysical methods,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
July 2010, Biochimica et biophysica acta,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
January 2015, Journal of the American Chemical Society,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
November 1999, Bioorganicheskaia khimiia,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
January 1975, Biomembranes,
R F Epand, and R Kraayenhof, and G J Sterk, and H W Wong Fong Sang, and R M Epand
March 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!