Comparison of the beta-toxins from Staphylococcus aureus and Staphylococcus intermedius. 1996

K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow 83844-3052, USA.

The beta-toxins produced by Staphylococcus aureus and Staphylococcus intermedius were purified to homogeneity from culture supernatants. Although the toxin from S. aureus has been throughly studied, less is known about its unique counterpart from S. intermedius. This is the first reported purification and analysis of the S. intermedius beta-toxin. Both toxins have similar enzymatic properties, belong to the class of neutral sphingomyelinases C, and have a high specificity for sphingomyelin. They also hydrolyze lysophosphatidylcholine at a much slower rate, but have no activity toward phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine. The kinetic parameters determined for both proteins (apparent Km 1.4 mM, Vmax 100 mmol/min/microg protein) are identical. Despite these similarities, the size and amino acid composition of the two beta-toxins differ. Molecular mass values, determined by electrophoresis and gel filtration, indicate that the both enzymes are single polypeptides. The decrease in sphingomyelinase activity of S. aureus beta-toxin upon pretreatment with dithiothreitol (DTT) indicates the presence of a disulfide bond in the protein. In contrast, DTT has no effect on the enzymatic activity of S. intermedius beta-toxin. This observation is consistent with the absence of detectable cysteine residue in the protein. N-terminal amino acid sequences determined for the first 19 residues of both beta-toxins also differ, only nine of the first 19 residues are identical. Further evidence that the two proteins differ was obtained by immunological analysis which demonstrated crossreactivity but a lack of identity.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001409 Bacillus cereus A species of rod-shaped bacteria that is a common soil saprophyte. Its spores are widespread and multiplication has been observed chiefly in foods. Contamination may lead to food poisoning.

Related Publications

K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
February 1990, Journal of clinical microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
July 1974, Applied microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
February 2014, Current opinion in microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
September 2006, Journal of clinical microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
January 1982, Pharmacology & therapeutics,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
March 1991, Journal of clinical microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
January 1998, Journal of structural biology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
October 1983, Journal of clinical microbiology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
April 1987, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology,
K Dziewanowska, and V M Edwards, and J R Deringer, and G A Bohach, and D J Guerra
May 2010, Toxins,
Copied contents to your clipboard!