Transplantation of oligodendrocyte progenitor cells into the rat retina: extensive myelination of retinal ganglion cell axons. 1996

P Laeng, and M Molthagen, and E G Yu, and U Bartsch
Department of Neurobiology, Swiss Federal Institute of Technology, Zürich, Switzerland.

In most mammals, retinal ganglion cell axons are unmyelinated in the retina. The same axons become myelinated in the optic nerve. Various studies suggest that retinal ganglion cell axons are also in principle, myelination competent intraretinally and that non-neuronal factors at the retinal end of the optic nerve prevent the migration of oligodendrocyte progenitor cells into the retina. To test this hypothesis directly, we injected oligodendrocyte progenitor cells into the retina of young postnatal rats. We observed massive myelination of ganglion cell axons in the retina 1 month after cell transplantation. Electron microscopic analysis revealed that intraretinal segments of ganglion cell axons were surrounded by central nervous system myelin sheaths with a normal morphology. Our results thus provide direct evidence for the myelination competence of the intraretinal part of rat retinal ganglion cell axons.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D015347 RNA Probes RNA, usually prepared by transcription from cloned DNA, which complements a specific mRNA or DNA and is generally used for studies of virus genes, distribution of specific RNA in tissues and cells, integration of viral DNA into genomes, transcription, etc. Whereas DNA PROBES are preferred for use at a more macroscopic level for detection of the presence of DNA/RNA from specific species or subspecies, RNA probes are preferred for genetic studies. Conventional labels for the RNA probe include radioisotope labels 32P and 125I and the chemical label biotin. RNA probes may be further divided by category into plus-sense RNA probes, minus-sense RNA probes, and antisense RNA probes. Gene Probes, RNA,RNA Probe,Probe, RNA,Probes, RNA,Probes, RNA Gene,RNA Gene Probes

Related Publications

P Laeng, and M Molthagen, and E G Yu, and U Bartsch
January 1991, Glia,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
July 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
April 1990, Journal of neurocytology,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
May 1973, Investigative ophthalmology,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
December 2010, Experimental eye research,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
August 2006, Neuroreport,
P Laeng, and M Molthagen, and E G Yu, and U Bartsch
November 1980, Brain research,
Copied contents to your clipboard!