Aged median eminence glial cell cultures promote survival and neurite outgrowth of cocultured neurons. 1996

N Chauvet, and A Privat, and G Alonso
INSERM U336, University of Montpellier II, France.

We have recently shown that tanycytes, a particular type of glial cell that has morphological and biochemical similarities with radial glial cells, constitute a preferential support for the regeneration of lesioned neurohypophysial axons. The present study was designed to explore the possible neurotrophic role of tanycytes in vitro. Glial cells derived from the median eminence or from the cerebral cortex of 10-day-old rats were cultured for 4-7 weeks. At these times the majority of the cells identified in the median eminence cultures exhibited immunostaining patterns of tanycytes, as detected in the mediobasal hypothalamus of 10-day-old and adult rats, i.e., they were immunoreactive to vimentin (VIM), to DARPP-32 (a dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein), and to a lesser extent to glial fibrillary acidic protein (GFAP) antibodies. On the other hand, the majority of cells in cortex cultures showed immunostaining patterns of astrocytes, i.e., they were intensely immunoreactive to GFAP and VIM antibodies but negative to DARPP-32. Cells obtained from the dissociation of 3-day-old rat mesencephalon, cortex, and hypothalamus were cocultured on these glial monolayers, and the number of surviving neurons and their neurite length were quantified after 8 days. Our data showed that, when compared with astrocytes, tanycytes greatly improved both survival (six-to ten-fold higher) and neurite outgrowth (two- to five-fold longer) of cocultured neurons whatever their origin. Experiments performed by coculturing neurons on millicell inserts placed above the glial monolayers showed that diffusible factors from median eminence glial cells slightly increased survival (1.7-fold higher) of cocultured neurons but had no significant effect on neurite outgrowth. These observations indicate: 1) that aged tanycytes have a capacity to support survival and neurite outgrowth for a variety of postnatal neurons; and 2) that this neurotrophic effect is exerted mainly by means of specific molecules bound to the tanycytic plasmalemma limiting membrane and/or to the extracellular matrix.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008473 Median Eminence Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND. Eminentia Mediana,Medial Eminence,Eminence, Medial,Eminence, Median,Eminences, Medial,Eminentia Medianas,Medial Eminences,Mediana, Eminentia,Medianas, Eminentia
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010750 Phosphoproteins Phosphoprotein
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Chauvet, and A Privat, and G Alonso
August 1999, Journal of neurobiology,
N Chauvet, and A Privat, and G Alonso
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
N Chauvet, and A Privat, and G Alonso
January 2001, European journal of histochemistry : EJH,
N Chauvet, and A Privat, and G Alonso
December 1993, Neuroreport,
N Chauvet, and A Privat, and G Alonso
December 2009, Experimental neurology,
N Chauvet, and A Privat, and G Alonso
January 1992, Biochemical and biophysical research communications,
N Chauvet, and A Privat, and G Alonso
September 2005, The Journal of nutritional biochemistry,
N Chauvet, and A Privat, and G Alonso
January 2015, Pharmacology,
N Chauvet, and A Privat, and G Alonso
December 2004, The Journal of biological chemistry,
N Chauvet, and A Privat, and G Alonso
November 1994, European journal of pharmacology,
Copied contents to your clipboard!