Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes. 1996

M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
Institut de Biologia Fonamental V. VIllar i Palasí, Universitat Autònoma de Barcelona, Bellaterra, Spain.

We have previously reported that stimulation of astrocyte cultures by particular agonists and calcium ionophores induces cyclic GMP formation through activation of a constitutive nitric oxide synthase (NOS) and that astrocytes from cerebellum show the largest response. In the present work we have used rat cerebellar astrocyteenriched primary cultures to identify and characterise the isoform of NOS expressed in these cells. The specific NOS activity in astrocyte homogenates, determined by conversion of [3H]arginine to [3H]citrulline, was ten times lower than in homogenates from cerebellar granule neurons. Upon centrifugation at 100,000 g, the astroglial activity was recovered in the supernatant, whereas in neurons around 30% of the activity remained particulate. The cytosolic NOS activities of both astrocytes and granule neurons displayed the same Km for L-arginine, dependency of calcium, and sensitivity to NOS inhibitors. Expression of NOS-I in astrocyte cytosolic fractions was revealed by Western blot with a specific polyclonal antiserum against recombinant NOS-I. Double immunofluorescence labelling using anti-glial fibrillary acidic protein (GFAP) and anti-NOS-I antibodies revealed that a minor population of the GFAP-positive cells, usually in clusters, presented a strong NOS-I immunostaining that was predominantly located around the nuclei and had a granular appearance, indicating association with the endoplasmic reticulum-Golgi system. Astrocytes of stellate morphology also showed immunoreactivity in the processes. Similar staining was observed with the avidin-biotin-peroxidase complex using different anti-NOS-I antisera. With this method the majority of cells showed a weak NOS-I immunoreactivity around the nuclei and cytosol. A similar pattern was observed with the NADPH-diaphorase reaction. These results demonstrate that the NOS-I expressed in astrocytes presents the same biochemical characteristics as the predominant neuronal isoform but may differ in intracellular location.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
April 1996, Japanese journal of pharmacology,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
June 1994, Neuroscience letters,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
February 1994, Journal of neuroscience research,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
January 2001, Brain research,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
October 1990, The Biochemical journal,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
July 1990, The Biochemical journal,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
March 1997, Proceedings of the National Academy of Sciences of the United States of America,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
April 2013, Brain research,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
January 1994, The Journal of biological chemistry,
M L Arbonés, and J Ribera, and L Agulló, and M A Baltrons, and A Casanovas, and V Riveros-Moreno, and A García
February 1996, Glia,
Copied contents to your clipboard!