Arachidonic acid mediates interleukin-1 and tumor necrosis factor-alpha-induced activation of the c-jun amino-terminal kinases in stromal cells. 1996

M T Rizzo, and C Carlo-Stella
Bone Marrow Transplantation Laboratory, Methodist Cancer Center, Methodist Hospital, Indianapolis, IN 46202, USA.

We have previously shown that arachidonic acid mediates interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha)-induced transcription of c-jun. The signaling pathway of arachidonic acid-induced c-jun transcription was independent of protein kinase C activation and involved a tyrosine kinase-dependent process. The present study was undertaken to further elucidate the signal transduction pathway of arachidonate-induced c-jun transcription. We used a glutathione-S-transferase-c-jun fusion protein containing the aminoterminal domain of c-jun (residues 5 to 89) to explore the hypothesis that arachidonic acid stimulates c-jun amino-terminal kinase (JNK) activity in the murine stromal cell line +/+.1 LDA 11. Extracts from arachidonic acid-treated cells catalyzed phosphorylation of the c-jun fusion protein, indicating stimulation of JNK activity. Similar results were obtained when cells were challenged with IL-1 and TNF-alpha. The effect of arachidonic acid was specific, because extracts from stimulated cells failed to phosphorylate a mutated fusion protein in which serine 63 and 73 of c-jun were each substituted with leucine. Arachidonic acid induced JNK activation in a time- and dose-dependent manner that was not mimicked by saturated fatty acids such as palmitic acid or other unsaturated fatty acids from the n-3, n-6, or n-9 series. Furthermore, other lipids, such as diacylglycerol, phosphatidic acid, and C2-ceramide, failed to induce a significant increase in JNK activity. Treatment of stromal cells with propyl gallate, a dual inhibitor of lipoxygenase and cyclooxygenase enzymes, did not affect the ability of arachidonic acid to induce JNK activation. Moreover, ETYA (5,8,11,14-eicosate-traynoic acid), a nonmetabolizable arachidonate analogue, also induced JNK activation. These results are consistent with the hypothesis that the signal transduction pathway by which arachidonate stimulates c-jun transcription involves activation of the JNK cascade. Furthermore, arachidonic acid itself and not its cyclooxygenase or lipoxygenase metabolites is involved in stimulating JNK activity. Thus, arachidonic acid may act as a second messenger in mediating the effects of IL-1 and TNF-alpha in the activation of c-jun.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003239 Connective Tissue Cells A group of cells that includes FIBROBLASTS, cartilage cells, ADIPOCYTES, smooth muscle cells, and bone cells. Cell, Connective Tissue,Cells, Connective Tissue,Connective Tissue Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015290 Second Messenger Systems Systems in which an intracellular signal is generated in response to an intercellular primary messenger such as a hormone or neurotransmitter. They are intermediate signals in cellular processes such as metabolism, secretion, contraction, phototransduction, and cell growth. Examples of second messenger systems are the adenyl cyclase-cyclic AMP system, the phosphatidylinositol diphosphate-inositol triphosphate system, and the cyclic GMP system. Intracellular Second Messengers,Second Messengers,Intracellular Second Messenger,Messenger, Second,Messengers, Intracellular Second,Messengers, Second,Second Messenger,Second Messenger System,Second Messenger, Intracellular,Second Messengers, Intracellular,System, Second Messenger,Systems, Second Messenger

Related Publications

M T Rizzo, and C Carlo-Stella
October 1997, The Journal of biological chemistry,
M T Rizzo, and C Carlo-Stella
October 2002, The Journal of biological chemistry,
M T Rizzo, and C Carlo-Stella
February 2002, The Journal of biological chemistry,
M T Rizzo, and C Carlo-Stella
May 1998, Molecular and cellular biology,
Copied contents to your clipboard!