The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli. 1996

P D Bragg, and C Hou
Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.

The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+, coupled to translocation of protons across the cytoplasmic membrane. The role of histidine residues in catalysis was investigated by chemical modification with diethylpyrocarbonate and by site-directed mutagenesis. Diethylpyrocarbonate inhibited both hydride ion transfer and coupled proton translocation. Histidine residues were modified as shown spectroscopically and by the ability of hydroxylamine to cause reversal of inhibition. Complete inhibition of hydride ion transfer occurred following modification of 10 residues/enzyme molecule. Site-directed mutagenesis of single conserved histidine residues or the presence of substrates did not provide resistance to inhibition by diethylpyrocarbonate. It is concluded that diethylpyrocarbonate inhibition was a consequence of the structural changes brought about by modification of many histidine residues. With the exception of beta-subunit residue His91 (beta His91), in which mutation can result in specific loss of proton translocation activity [Glavas, N. A., Hou, C. & Bragg, P. D. (1995) Biochemistry 34, 7694-7702], site-directed mutation of the remaining conserved residues alpha His450, beta His161, beta His345 and beta His354 did not demonstrate a direct role for these residues in catalysis. Mutation of beta His161 had relatively little effect on the properties of the enzyme. By contrast, mutation of alpha His450, beta His345 and beta His354 caused major loss of enzyme activities which was probably due to alterations in the structure of the enzyme. These alterations were reflected in changes in the K(m) values for transhydrogenation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009250 NADP Transhydrogenases Enzymes that catalyze the reversible reduction of NAD by NADPH to yield NADP and NADH. This reaction permits the utilization of the reducing properties of NADPH by the respiratory chain and in the reverse direction it allows the reduction of NADP for biosynthetic purposes. NADP Transhydrogenase,Pyridine Nucleotide Transhydrogenase,Energy-Linked Transhydrogenase,NAD Transhydrogenase,NADPH NAD Transhydrogenase,NADPH Transferase,Nicotinamide Nucleotide Transhydrogenase,Energy Linked Transhydrogenase,NAD Transhydrogenase, NADPH,Nucleotide Transhydrogenase, Nicotinamide,Nucleotide Transhydrogenase, Pyridine,Transferase, NADPH,Transhydrogenase, Energy-Linked,Transhydrogenase, NAD,Transhydrogenase, NADP,Transhydrogenase, NADPH NAD,Transhydrogenase, Nicotinamide Nucleotide,Transhydrogenase, Pyridine Nucleotide,Transhydrogenases, NADP
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004047 Diethyl Pyrocarbonate Preservative for wines, soft drinks, and fruit juices and a gentle esterifying agent. Diethyl Dicarbonate,Diethyl Oxydiformate,Pyrocarbonic Acid Diethyl Ester,Diethylpyrocarbonate,Ethoxyformic Anhydride,Anhydride, Ethoxyformic,Dicarbonate, Diethyl,Oxydiformate, Diethyl,Pyrocarbonate, Diethyl
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

P D Bragg, and C Hou
May 1978, Journal of bacteriology,
P D Bragg, and C Hou
February 1979, The Journal of biological chemistry,
P D Bragg, and C Hou
February 1999, Journal of bacteriology,
P D Bragg, and C Hou
December 1976, Biochemical and biophysical research communications,
Copied contents to your clipboard!