Heteromultimeric CLC chloride channels with novel properties. 1996

C Lorenz, and M Pusch, and T J Jentsch
Center for Molecular Neurobiology, Hamburg University, Germany.

The skeletal muscle chloride channel CLC-1 and the ubiquitous volume-activated chloride channel CLC-2 belong to a large gene family whose members often show overlapping expression patterns. CLC-1 and CLC-2 are coexpressed in skeletal and smooth muscle and in the heart. By coexpressing CLC-1 and CLC-2 in Xenopus oocytes, we now show the formation of novel CLC-1/CLC-2 heterooligomers that yield time-independent linear chloride currents with a chloride-->bromide-->iodide selectivity sequence. Formation of heterooligomeric CLC channels increases the number and possible functions of chloride channels.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000090007 CLC-2 Chloride Channels One of the nine mammalian members of the CHLORIDE CHANNEL family involved in chloride ion transport.It has several functions including the regulation of cell volume, membrane potential stabilization, signal transduction and transepithelial transport. ClC-2 Channel,ClC-2 Chloride Channel,CLC 2 Chloride Channels,Channel, ClC-2,Channel, ClC-2 Chloride,Channels, CLC-2 Chloride,Chloride Channel, ClC-2,Chloride Channels, CLC-2,ClC 2 Channel,ClC 2 Chloride Channel
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000873 Anthracenes A group of compounds with three aromatic rings joined in linear arrangement.

Related Publications

C Lorenz, and M Pusch, and T J Jentsch
January 2001, Genome biology,
C Lorenz, and M Pusch, and T J Jentsch
September 1990, Biochemical and biophysical research communications,
C Lorenz, and M Pusch, and T J Jentsch
June 2005, Current opinion in neurobiology,
C Lorenz, and M Pusch, and T J Jentsch
August 2002, Current opinion in structural biology,
C Lorenz, and M Pusch, and T J Jentsch
November 1999, The Journal of biological chemistry,
C Lorenz, and M Pusch, and T J Jentsch
January 1995, The Journal of physiology,
C Lorenz, and M Pusch, and T J Jentsch
December 2002, Pflugers Archiv : European journal of physiology,
C Lorenz, and M Pusch, and T J Jentsch
July 1996, Nihon Jinzo Gakkai shi,
C Lorenz, and M Pusch, and T J Jentsch
January 1994, The Japanese journal of physiology,
C Lorenz, and M Pusch, and T J Jentsch
March 1996, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!