Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. 1996

Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295, USA.

The rare folate-sensitive, fragile sites on chromsomes X, 11, and 16 contain blocks of CCG triplet repeats and large expansions of the CCG block at the FRAXA site produce the fragile X syndrome (FraX). The fragile, poorly staining nature of these sites suggested an altered chromatin structure. Here, repeating CCG DNAs from FraX patients were tested for their ability to assemble into nucleosomes, the basic subunits of chromatin, using in vitro nucleosome reconstitution, electron microscopy and competitive assembly gel retardation assays. CCG blocks of >50 repeats displayed strong nucleosome exclusion, providing a possible explanation for the nature of these sites.

UI MeSH Term Description Entries
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002873 Chromosome Fragility Susceptibility of chromosomes to breakage leading to translocation; CHROMOSOME INVERSION; SEQUENCE DELETION; or other CHROMOSOME BREAKAGE related aberrations. Chromosomal Fragility,Fragility, Chromosomal,Fragility, Chromosome
D005600 Fragile X Syndrome A condition characterized genotypically by mutation of the distal end of the long arm of the X chromosome (at gene loci FRAXA or FRAXE) and phenotypically by cognitive impairment, hyperactivity, SEIZURES, language delay, and enlargement of the ears, head, and testes. INTELLECTUAL DISABILITY occurs in nearly all males and roughly 50% of females with the full mutation of FRAXA. (From Menkes, Textbook of Child Neurology, 5th ed, p226) FRAXA Syndrome,FRAXE Syndrome,Martin-Bell Syndrome,Fra(X) Syndrome,Fragile X Mental Retardation Syndrome,Fragile X-F Mental Retardation Syndrome,Mar (X) Syndrome,Marker X Syndrome,Mental Retardation, X-Linked, Associated With Fragile Site Fraxe,Mental Retardation, X-Linked, Associated With Marxq28,X-Linked Mental Retardation and Macroorchidism,FRAXA Syndromes,FRAXE Syndromes,Fragile X Syndromes,Marker X Syndromes,Martin Bell Syndrome,Syndrome, FRAXA,Syndrome, FRAXE,Syndrome, Fragile X,Syndrome, Marker X,Syndrome, Martin-Bell,Syndromes, FRAXA,Syndromes, FRAXE,Syndromes, Fragile X,Syndromes, Marker X,X Linked Mental Retardation and Macroorchidism
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
September 1996, The Journal of biological chemistry,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
February 1998, Mutation research,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
April 1983, Science (New York, N.Y.),
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
January 1981, Canadian Medical Association journal,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
September 1983, American journal of medical genetics,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
May 1995, Journal of medical genetics,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
September 1994, Human molecular genetics,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
January 1998, The Indian journal of medical research,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
September 1988, Cancer genetics and cytogenetics,
Y H Wang, and R Gellibolian, and M Shimizu, and R D Wells, and J Griffith
January 1995, Annual review of neuroscience,
Copied contents to your clipboard!