The role of individual cysteine residues in the processing, structure, and function of human macrophage colony-stimulating factor. 1996

P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
Department of Pathology, Childrens Hospital of Los Angeles, USA.

The shortest form of human macrophage colony-stimulating factor (M-CSF alpha, CSF-1(256) is expressed on the cell surface as a homodimeric type I transmembrane glycoprotein. The seven cysteine residues in CSF-1(256) form three intrachain disulfide bonds (Cys7-Cys90, Cys48-Cys139, and Cys 102-Cys146), and one interchain disulfide bond (Cys31-Cys31). To examine the role of the seven cysteine residues in CSF-1(256), we replaced each half-cystine by a serine using site-directed mutagenesis, and stably expressed the mutated genes in mouse NIH 3T3 cells. We showed that each of the seven cysteines of CSF-1(256) is essential for its biological activity. Our data further show that substitution of Cys48 or Cys139 totally blocked dimer formation and cell surface expression of CSF-1(256), and that substitution of Cys102 and Cys146 severely impaired CSF-1 dimer formation and cell surface expression. In contrast, substitution of Cys7 or Cys90 affected CSF-1 dimer formation to a lesser degree but did not significantly affect cell surface expression of CSF-1. Furthermore, disruption of the interchain disulfide bond led to efficient cell surface expression of monomeric CSF-1. All of the cell surface expressed mutant CSF-1 proteins, either dimeric or monomeric, still underwent efficient ectodomain cleavage. The electrophoretic mobilities of the cleaved dimeric ectodomains of these mutant CSF-1 proteins on SDS-PAGE exhibited distinctly different patterns as compared with the wild type. Substitution of either Cys7 or Cys90 produced the same shift, while substitution of either Cys102 or Cys146 resulted in a shift distinct from that caused by substitution of Cys7 or Cys90. These data suggest that replacement of either of a pair of intrachain half-cystine residues results in similar conformational changes, and may provide a novel method for mapping intrachain disulfide bonds in dimeric proteins.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
August 1988, Journal of immunology (Baltimore, Md. : 1950),
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
January 1997, Molecular reproduction and development,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
July 1987, Biochemistry,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
December 1994, The Journal of biological chemistry,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
August 1992, Nihon rinsho. Japanese journal of clinical medicine,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
August 1992, Nihon rinsho. Japanese journal of clinical medicine,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
September 1992, Pharmacological research,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
January 1989, Biotechnology therapeutics,
P Deng, and Y L Wang, and P K Pattengale, and C W Rettenmier
April 1992, Journal of molecular biology,
Copied contents to your clipboard!