Selective effects of oxygen free radicals on excitation-contraction coupling in ventricular muscle. Implications for the mechanism of stunned myocardium. 1996

W D Gao, and Y Liu, and E Marban
Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md 21205, USA.

BACKGROUND Oxygen free radicals (OFRs) have been implicated in the pathogenesis of myocardial stunning, but the precise mechanism by which OFRs foster stunning remains unclear. We investigated the pathophysiology of the contractile dysfunction that occurs after direct exposure of OFRs to cardiac muscle and compared the results with the pathophysiology of stunned myocardium. RESULTS Trabeculae from the right ventricles of rat hearts were loaded iontophoretically with fura-2 to determine [Ca2+]i. Steady-state force-[Ca2+]i relations were obtained by rapid electrical stimulation in the presence of ryanodine. Two exogenous OFR-generating systems were used: H2O2 + Fe(3+)-nitrilotriacetic acid (H2O2 + Fe3+) to produce hydroxyl radical, and xanthine oxidase+purine (XO + P) to produce superoxide. In muscles exposed to H2O2 + Fe3+ for 10 minutes, both twitch force and Ca2+ transients were decreased (eg, in 1.5 mmol/L external [Ca2+], force decreased from 41 +/- 7 to 23 +/- 4 mN/mm2, P < .05, and Ca2+ transient amplitude from 0.96 +/- 0.09 to 0.70 +/- 0.05 mumol/L, P < .05). Maximal Ca(2+)-activated force (Fmax) decreased slightly, from 103 +/- 5 to 80 +/- 12 mN/mm2 (P = NS). Neither the [Ca2+]i required to achieve 50% of Fmax (Ca50) nor the Hill coefficient was changed. In muscles exposed to XO + P for 20 minutes, twitch force was reduced (in 1.5 mmol/L external [Ca2+]) from 50 +/- 9 to 39 +/- 8 mN/mm2 (P < .05). Ca2+ transients, on the other hand, were not affected. Fmax decreased insignificantly from 100 +/- 16 to 81 +/- 14 mN/mm2. Ca50 increased from 0.71 +/- 0.06 to 1.07 +/- 0.07 mumol/L (P < .05), with no change in the Hill coefficient. CONCLUSIONS These results indicate that exposure to the H2O2 + Fe3+ free radical-generating system reduces activator Ca2+ availability, whereas XO + P decreases the Ca2+ sensitivity of the myofilaments. Exogenously generated OFRs, particularly those produced by XO + P, mimic the effects of myocardial stunning on cardiac excitation-contraction coupling.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011687 Purines A series of heterocyclic compounds that are variously substituted in nature and are known also as purine bases. They include ADENINE and GUANINE, constituents of nucleic acids, as well as many alkaloids such as CAFFEINE and THEOPHYLLINE. Uric acid is the metabolic end product of purine metabolism.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005290 Ferric Compounds Inorganic or organic compounds containing trivalent iron. Compounds, Ferric
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W D Gao, and Y Liu, and E Marban
January 2000, Antioxidants & redox signaling,
W D Gao, and Y Liu, and E Marban
January 1988, Free radical biology & medicine,
W D Gao, and Y Liu, and E Marban
February 1995, Journal of molecular and cellular cardiology,
W D Gao, and Y Liu, and E Marban
September 1991, Japanese circulation journal,
W D Gao, and Y Liu, and E Marban
April 1995, Circulation research,
W D Gao, and Y Liu, and E Marban
July 1988, Journal of the American College of Cardiology,
W D Gao, and Y Liu, and E Marban
January 1991, Annual review of physiology,
W D Gao, and Y Liu, and E Marban
January 1992, Advances in experimental medicine and biology,
W D Gao, and Y Liu, and E Marban
March 2014, Biophysical reviews,
W D Gao, and Y Liu, and E Marban
January 1976, Advances in biophysics,
Copied contents to your clipboard!