Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo. 1996

M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
Department of Neurophysiology, Primate Research Institute, Kyoto University, Aichi, Japan.

To document synaptic interactions between neurons in the precentral cortex of macaque monkeys, we recorded in vivo the intracellular (IC) membrane potentials of cortical neurons simultaneously with extracellular (EC) action potentials of neighboring cells. The synaptic potentials correlated with EC spikes were obtained by spike-triggered averages (STA) of the IC membrane potentials for 373 cell pairs recorded in anesthetized and awake behaving monkeys. Sixty-three STAs (17%) showed excitatory postsynaptic potentials (EPSPs), beginning after the trigger spike. Pure EPSPs had onset latencies of 0.9 +/- 0.7 msec (mean +/- SD) and amplitudes of 226 +/- 130 microV. Sixteen STAs (4%) showed postspike inhibitory postsynaptic potentials (IPSPs), with onset latencies of 0.4 +/- 0.4 msec and amplitudes of -274 +/- 188 microV. The most common waveform, observed in 82% of the STAs with features, was a broad depolarization straddling the trigger spikes, reflecting synchronized synaptic input to both IC and EC neurons. These average synchronous excitation potentials (ASEPs) began 14.3 +/- 6.6 msec before the trigger spike and had amplitudes of 1064 +/- 867 microV. Twenty-three STAs (6%) showed an average synchronous inhibitory potential (ASIP): a hyperpolarization beginning before the trigger spike and reflecting IPSPs produced by a group of local inhibitory cells synchronized with the trigger cell. ASIPs had an onset latency of -5.5 +/- 2.7 msec and amplitude of -589 +/- 502 microV. Combinations of synchronous and postspike potentials were also observed. Successive recordings provided examples of convergent and divergent connections between EC and IC cells. Neuron pairs with depolarizing postsynaptic potentials (PSPs) in the STA yielded peaks in the cross-correlograms of the IC and EC action potentials; the peak area was proportional to the amplitude of the PSP. These data suggest that a significantly larger proportion of cortical neurons interact through synchronous activity than through simple serial interactions; moreover, synchronous excitation affected more widely separated cell pairs than EPSPs and IPSPs, which were seen most often among the closest cells.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008251 Macaca A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of 16 species inhabiting forests of Africa, Asia, and the islands of Borneo, Philippines, and Celebes. Ape, Barbary,Ape, Black,Ape, Celebes,Barbary Ape,Black Ape,Celebes Ape,Macaque,Apes, Barbary,Apes, Black,Apes, Celebes,Barbary Apes,Black Apes,Celebes Apes,Macacas,Macaques
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
March 1979, Brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
January 1988, Experimental brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
March 1988, Brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
June 1985, Journal of neurophysiology,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
January 1978, Brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
December 1983, Brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
March 1982, Brain research,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
January 1961, Journal of neurophysiology,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
October 1977, The Journal of physiology,
M Matsumura, and D Chen, and T Sawaguchi, and K Kubota, and E E Fetz
January 2013, PloS one,
Copied contents to your clipboard!