Development of blood-brain barrier tight junctions in the rat cortex. 1996

U Kniesel, and W Risau, and H Wolburg
Max-Planck-Institut für Physiologische, W.G. Kerckhoff-Institut, Bad Nauheim, Germany.

The structural equivalent of the blood-brain barrier are the complex tight junctions (TJs) between endothelial cells of brain capillaries. In this study, we have quantitatively investigated by the freeze-fracture technique the modulation of the fine structure of TJs in blood-brain barrier endothelial cells during development of the rat cerebral cortex. The complexity of the TJ network as defined by fractal dimension, the integrity of TJ strands and the degree of TJ particle association to the protoplasmic leaflet of the membrane bilayer in percent of total TJ length were evaluated at embryonic days (E) 13, 15, 18, postnatal day (P) 1 and adult. We observed that the overall complexity of the TJ network and P-face association of TJ particles are significantly increased between E18 and P1. The increase in both of these TJ parameters in combination with the completed particle insertion starting from E18 is likely to reflect the process of transition to the mature state of the blood-brain barrier, which is characterized by high complexity of TJs and predominance of P-face association of TJ particles and correlated tightly with previous physiological measurements, e.g. transendothelial electrical resistance. Two populations of TJs differing in TJ particle density were distinguishable at E15 and E18, which indicates a non-linear asynchronous mechanism of TJ assembly. At E13, particle-free membrane specializations arranged in a TJ-like pattern strongly resembled TJ specific grooves and ridges. Similar results were obtained from cultures of brain endothelial cells in the presence of low calcium conditions, which suggests the involvement of the cadherin/catenin complex in TJ regulation. The particle-free 'TJ precursors' strongly indicate an established TJ associated cytoskeletal network before the TJ particles are present in their intra-junctional location.

UI MeSH Term Description Entries
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

U Kniesel, and W Risau, and H Wolburg
February 2000, Cellular and molecular neurobiology,
U Kniesel, and W Risau, and H Wolburg
June 2002, Vascular pharmacology,
U Kniesel, and W Risau, and H Wolburg
May 2005, The Journal of cell biology,
U Kniesel, and W Risau, and H Wolburg
December 2021, eLife,
U Kniesel, and W Risau, and H Wolburg
January 2016, CNS & neurological disorders drug targets,
U Kniesel, and W Risau, and H Wolburg
January 2014, Frontiers in neuroscience,
U Kniesel, and W Risau, and H Wolburg
November 2019, International journal of molecular sciences,
U Kniesel, and W Risau, and H Wolburg
December 2001, Trends in neurosciences,
U Kniesel, and W Risau, and H Wolburg
January 2012, Advances in experimental medicine and biology,
Copied contents to your clipboard!