Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. 1995

R G Smith, and N Vardi
Department of Neuroscience, University of Pennsylvania, Philadelphia 19104-6058, USA.

The AII amacrine cell of mammalian retina collects signals from several hundred rods and is hypothesized to transmit quantal "single-photon" signals at scotopic (starlight) intensities. One problem for this theory is that the quantal signal from one rod when summed with noise from neighboring rods would be lost if some mechanism did not exist for removing the noise. Several features of the AII might together accomplish such a noise removal operation: The AII is interconnected into a syncytial network by gap junctions, suggesting a noise-averaging function, and a quantal signal from one rod appears in five AII cells due to anatomical divergence. Furthermore, the AII contains voltage-gated Na+ and K+ channels and fires slow action potentials in vitro, suggesting that it could selectively amplify quantal photon signals embedded in uncorrelated noise. To test this hypothesis, we simulated a square array of AII somas (Rm = 25,000 Ohm-cm2) interconnected by gap junctions using a compartmental model. Simulated noisy inputs to the AII produced noise (3.5 mV) uncorrelated between adjacent cells, and a gap junction conductance of 200 pS reduced the noise by a factor of 2.5, consistent with theory. Voltage-gated Na+ and K+ channels (Na+: 4 nS, K+: 0.4 nS) produced slow action potentials similar to those found in vitro in the presence of noise. For a narrow range of Na+ and coupling conductance, quantal photon events (approximately 5-10 mV) were amplified nonlinearly by subthreshold regenerative events in the presence of noise. A lower coupling conductance produced spurious action potentials, and a greater conductance reduced amplification. Since the presence of noise in the weakly coupled circuit readily initiates action potentials that tend to spread throughout the AII network, we speculate that this tendency might be controlled in a negative feedback loop by up-modulating coupling or other synaptic conductances in response to spiking activity.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

R G Smith, and N Vardi
March 2010, Journal of neurophysiology,
R G Smith, and N Vardi
January 2001, Progress in brain research,
R G Smith, and N Vardi
January 2012, Visual neuroscience,
R G Smith, and N Vardi
January 2020, Frontiers in cellular neuroscience,
R G Smith, and N Vardi
March 2004, The Journal of comparative neurology,
R G Smith, and N Vardi
January 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R G Smith, and N Vardi
January 1997, Visual neuroscience,
R G Smith, and N Vardi
March 2000, The Journal of physiology,
Copied contents to your clipboard!