A homology model for rat mu class glutathione S-transferase 4-4. 1996

M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands.

Glutathione S-transferases (GSTs) are an important class of phase II (de)toxifying enzymes, catalyzing the conjugation of glutathione (GSH) to electrophilic species. Recently, a number of cytosolic GSTs was crystallized. In the present study, molecular modeling techniques have been used to derive a three-dimensional homology model for rat GST 4-4 based upon the crystal structure of rat GST 3-3, both members of the mu class. GST 3-3 and GST 4-4 isoenzymes share a sequence homology of 88%. GST 4-4 distinguishes itself from GST 3-3 in being much more efficient and stereoselective in the nucleophilic addition of GSH to epoxides and alpha,beta-unsaturated ketones. GST 3-3, however, is much more efficient in catalyzing nucleophilic aromatic substitution reactions. In this study, several known substrates of GST 4-4 were selected and their GSH conjugates docked into the active site of GST 4-4. GSH conjugates of phenanthrene 9(S),10(R)-oxide and 4,5-diazaphenanthrene 9(S),10(R)-oxide were docked into the active site of both GST 3-3 and GST 4-4. From these homology modeling and docking data, the difference in stereoselectivity between GST 3-3 and GST 4-4 for the R- and S-configured carbons of the oxirane moiety could be rationalized. The data acquired from a recently derived small molecule model for GST 4-4 substrates were compared with the results of the present protein homology model of GST 4-4. The energy optimized positions of the conjugates in the protein model agreed very well with the original relative positions of the substrates within the substrate model, confirming the usefulness of small molecule models in the absence of structural protein data. The protein homology model, together with the substrate model, will be useful to further rationalize the substrate selectivity of GST 4-4, and to identify new potential GST 4-4 substrates.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D011721 Pyrenes A group of condensed ring hydrocarbons.
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004137 Dinitrochlorobenzene A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds. 1-Chloro-2,4-Dinitrobenzene,2,4-Dinitrochlorobenzene,Benzene, 1-Chloro-2,4-Dinitro-,Chlorodinitrobenzene,DNCB,1 Chloro 2,4 Dinitrobenzene,2,4 Dinitrochlorobenzene
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
March 1991, The Biochemical journal,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
June 1998, Archives of biochemistry and biophysics,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
January 1997, Proteins,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
March 1998, The Biochemical journal,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
September 1991, Human genetics,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
November 1998, Proteins,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
September 2000, Experimental eye research,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
November 1991, Biochimica et biophysica acta,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
May 2002, Parasitology research,
M J de Groot, and N P Vermeulen, and D L Mullenders, and G M Donné-Op den Kelder
September 2020, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Copied contents to your clipboard!